This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrdi | ⊢ ( 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑙 = 𝐿 → ( 0 ..^ 𝑙 ) = ( 0 ..^ 𝐿 ) ) | |
| 2 | 1 | feq2d | ⊢ ( 𝑙 = 𝐿 → ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) ) |
| 3 | 2 | rspcev | ⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) → ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| 4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 5 | fzo0n0 | ⊢ ( ( 0 ..^ 𝐿 ) ≠ ∅ ↔ 𝐿 ∈ ℕ ) | |
| 6 | nnnn0 | ⊢ ( 𝐿 ∈ ℕ → 𝐿 ∈ ℕ0 ) | |
| 7 | 5 6 | sylbi | ⊢ ( ( 0 ..^ 𝐿 ) ≠ ∅ → 𝐿 ∈ ℕ0 ) |
| 8 | 7 | necon1bi | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 0 ..^ 𝐿 ) = ∅ ) |
| 9 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 10 | 8 9 | eqtr4di | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 0 ..^ 𝐿 ) = ( 0 ..^ 0 ) ) |
| 11 | 10 | feq2d | ⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆 ) ) |
| 12 | 11 | biimpa | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) → 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆 ) |
| 13 | oveq2 | ⊢ ( 𝑙 = 0 → ( 0 ..^ 𝑙 ) = ( 0 ..^ 0 ) ) | |
| 14 | 13 | feq2d | ⊢ ( 𝑙 = 0 → ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆 ) ) |
| 15 | 14 | rspcev | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆 ) → ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| 16 | 4 12 15 | sylancr | ⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∧ 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 ) → ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| 17 | 3 16 | pm2.61ian | ⊢ ( 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 → ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
| 18 | iswrd | ⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) | |
| 19 | 17 18 | sylibr | ⊢ ( 𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑆 → 𝑊 ∈ Word 𝑆 ) |