This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc2dvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcdvdstr | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
| 3 | 2 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
| 4 | 3 | 3expia | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐴 = 0 → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 0 ) ) | |
| 6 | 5 | breq1d | ⊢ ( 𝐴 = 0 → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝐴 = 0 → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 8 | breq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ∥ 𝐵 ↔ 0 ∥ 𝐵 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝐴 = 0 → ( ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) ) |
| 10 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 11 | 10 | simpld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 12 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 13 | 12 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 14 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 15 | dvdsabsb | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) ) |
| 17 | 11 16 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) |
| 19 | simpl | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐴 = 0 ) | |
| 20 | 19 | necon3ai | ⊢ ( 𝐴 ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 21 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 22 | 20 21 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 23 | 22 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 24 | 22 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 25 | nnabscl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) | |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
| 27 | 26 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
| 28 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ ( abs ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 29 | 23 24 27 28 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 30 | 18 29 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 31 | nnre | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 32 | nngt0 | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → 0 < ( abs ‘ 𝐴 ) ) | |
| 33 | 31 32 | jca | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) |
| 34 | nnre | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) | |
| 35 | nngt0 | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → 0 < ( 𝐴 gcd 𝐵 ) ) | |
| 36 | 34 35 | jca | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ) |
| 37 | divgt0 | ⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) | |
| 38 | 33 36 37 | syl2an | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
| 39 | 26 22 38 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
| 40 | elnnz | ⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 41 | 30 39 40 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 42 | elnn1uz2 | ⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 43 | 41 42 | sylib | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 44 | 10 | simprd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 46 | breq1 | ⊢ ( ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) | |
| 47 | 45 46 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) → ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
| 48 | 26 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 49 | 22 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 50 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) | |
| 51 | 48 49 50 24 | divmuld | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ↔ ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( abs ‘ 𝐴 ) ) ) |
| 52 | 49 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( 𝐴 gcd 𝐵 ) ) |
| 53 | 52 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( abs ‘ 𝐴 ) ↔ ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) ) ) |
| 54 | 51 53 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) ) ) |
| 55 | absdvdsb | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) | |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
| 57 | 47 54 56 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 → 𝐴 ∥ 𝐵 ) ) |
| 58 | exprmfct | ⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) | |
| 59 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝑝 ∈ ℙ ) | |
| 60 | 26 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
| 61 | 60 | nnzd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
| 62 | 60 | nnne0d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 63 | 22 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 64 | pcdiv | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 65 | 59 61 62 63 64 | syl121anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
| 66 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ∈ ℤ ) | |
| 67 | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ∈ ℚ ) |
| 69 | pcabs | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑝 pCnt 𝐴 ) ) | |
| 70 | 59 68 69 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑝 pCnt 𝐴 ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
| 72 | 65 71 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
| 73 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) | |
| 74 | 41 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 75 | pcelnn | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) → ( ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 76 | 59 74 75 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 77 | 73 76 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) |
| 78 | 72 77 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) |
| 79 | 59 63 | pccld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
| 80 | 79 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 81 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ≠ 0 ) | |
| 82 | pczcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 83 | 59 66 81 82 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 84 | 83 | nn0zd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
| 85 | znnsub | ⊢ ( ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) ) | |
| 86 | 80 84 85 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) ) |
| 87 | 78 86 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ) |
| 88 | 79 | nn0red | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℝ ) |
| 89 | 83 | nn0red | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) |
| 90 | 88 89 | ltnled | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
| 91 | 87 90 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) |
| 92 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐵 ∈ ℤ ) | |
| 93 | nprmdvds1 | ⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) | |
| 94 | 93 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ 𝑝 ∥ 1 ) |
| 95 | gcdid0 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) | |
| 96 | 66 95 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
| 97 | 96 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) |
| 98 | 48 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 99 | 98 62 | dividd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
| 100 | 97 99 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) = 1 ) |
| 101 | 100 | breq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ↔ 𝑝 ∥ 1 ) ) |
| 102 | 94 101 | mtbird | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) |
| 103 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 gcd 𝐵 ) = ( 𝐴 gcd 0 ) ) | |
| 104 | 103 | oveq2d | ⊢ ( 𝐵 = 0 → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) |
| 105 | 104 | breq2d | ⊢ ( 𝐵 = 0 → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) ) |
| 106 | 73 105 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐵 = 0 → 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) ) |
| 107 | 106 | necon3bd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ¬ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) → 𝐵 ≠ 0 ) ) |
| 108 | 102 107 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐵 ≠ 0 ) |
| 109 | pczcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) | |
| 110 | 59 92 108 109 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
| 111 | 110 | nn0red | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 112 | lemin | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) | |
| 113 | 89 89 111 112 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 114 | pcgcd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) | |
| 115 | 59 66 92 114 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) |
| 116 | 115 | breq2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 117 | 89 | leidd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 118 | 117 | biantrurd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 119 | 113 116 118 | 3bitr4rd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
| 120 | 91 119 | mtbird | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
| 121 | 120 | expr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 122 | 121 | reximdva | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 123 | rexnal | ⊢ ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) | |
| 124 | 122 123 | imbitrdi | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 125 | 58 124 | syl5 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 126 | 57 125 | orim12d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ∥ 𝐵 ∨ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 127 | 43 126 | mpd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∥ 𝐵 ∨ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 128 | 127 | ord | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ¬ 𝐴 ∥ 𝐵 → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 129 | 128 | con4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ) |
| 130 | 2prm | ⊢ 2 ∈ ℙ | |
| 131 | 130 | ne0ii | ⊢ ℙ ≠ ∅ |
| 132 | r19.2z | ⊢ ( ( ℙ ≠ ∅ ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) | |
| 133 | 131 132 | mpan | ⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
| 134 | id | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) | |
| 135 | zq | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) | |
| 136 | 135 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℚ ) |
| 137 | pcxcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) | |
| 138 | 134 136 137 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
| 139 | pnfge | ⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ* → ( 𝑝 pCnt 𝐵 ) ≤ +∞ ) | |
| 140 | 138 139 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ +∞ ) |
| 141 | 140 | biantrurd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( +∞ ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 142 | pc0 | ⊢ ( 𝑝 ∈ ℙ → ( 𝑝 pCnt 0 ) = +∞ ) | |
| 143 | 142 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 0 ) = +∞ ) |
| 144 | 143 | breq1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
| 145 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 146 | xrletri3 | ⊢ ( ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) | |
| 147 | 138 145 146 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 148 | 141 144 147 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 𝐵 ) = +∞ ) ) |
| 149 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 150 | 149 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 151 | eleq1 | ⊢ ( ( 𝑝 pCnt 𝐵 ) = +∞ → ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) | |
| 152 | 150 151 | mtbiri | ⊢ ( ( 𝑝 pCnt 𝐵 ) = +∞ → ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 153 | 109 | nn0red | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 154 | 153 | adantll | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 155 | 154 | an4s | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑝 ∈ ℙ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 156 | 155 | expr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝐵 ≠ 0 → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) ) |
| 157 | 156 | necon1bd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℝ → 𝐵 = 0 ) ) |
| 158 | 152 157 | syl5 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ → 𝐵 = 0 ) ) |
| 159 | 148 158 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐵 = 0 ) ) |
| 160 | 159 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐵 = 0 ) ) |
| 161 | 0dvds | ⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) | |
| 162 | 161 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| 163 | 160 162 | sylibrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) |
| 164 | 133 163 | syl5 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) |
| 165 | 9 129 164 | pm2.61ne | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ) |
| 166 | 4 165 | impbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |