This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprmfct | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 2 | eleq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 1 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 3 | 2 | imbi1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ) ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 5 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑦 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 9 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑧 ) ) | |
| 10 | 9 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) ) |
| 12 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 13 | breq2 | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 · 𝑧 ) → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
| 16 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 17 | breq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝑁 ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑥 = 𝑁 → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) ) |
| 20 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 21 | uz2m1nn | ⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ( 1 − 1 ) ∈ ℕ ) | |
| 22 | 20 21 | eqeltrrid | ⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℕ ) |
| 23 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 24 | 23 | pm2.21i | ⊢ ( 0 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
| 25 | 22 24 | syl | ⊢ ( 1 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
| 26 | prmz | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℤ ) | |
| 27 | iddvds | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∥ 𝑥 ) | |
| 28 | 26 27 | syl | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∥ 𝑥 ) |
| 29 | breq1 | ⊢ ( 𝑝 = 𝑥 → ( 𝑝 ∥ 𝑥 ↔ 𝑥 ∥ 𝑥 ) ) | |
| 30 | 29 | rspcev | ⊢ ( ( 𝑥 ∈ ℙ ∧ 𝑥 ∥ 𝑥 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
| 31 | 28 30 | mpdan | ⊢ ( 𝑥 ∈ ℙ → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) |
| 32 | 31 | a1d | ⊢ ( 𝑥 ∈ ℙ → ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑥 ) ) |
| 33 | simpl | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 34 | eluzelz | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℤ ) | |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∈ ℤ ) |
| 36 | eluzelz | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) | |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑧 ∈ ℤ ) |
| 38 | dvdsmul1 | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑦 ∥ ( 𝑦 · 𝑧 ) ) | |
| 39 | 35 37 38 | syl2anc | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑦 ∥ ( 𝑦 · 𝑧 ) ) |
| 40 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 42 | 35 37 | zmulcld | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑦 · 𝑧 ) ∈ ℤ ) |
| 43 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ ( 𝑦 · 𝑧 ) ∈ ℤ ) → ( ( 𝑝 ∥ 𝑦 ∧ 𝑦 ∥ ( 𝑦 · 𝑧 ) ) → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) | |
| 44 | 41 35 42 43 | syl3anc | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑦 ∧ 𝑦 ∥ ( 𝑦 · 𝑧 ) ) → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
| 45 | 39 44 | mpan2d | ⊢ ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑦 → 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
| 46 | 45 | reximdva | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
| 47 | 33 46 | embantd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) |
| 48 | 47 | a1dd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) → ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
| 49 | 48 | adantrd | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑦 ) ∧ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑧 ) ) → ( ( 𝑦 · 𝑧 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑦 · 𝑧 ) ) ) ) |
| 50 | 3 7 11 15 19 25 32 49 | prmind | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) ) |
| 51 | 1 50 | mpcom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |