This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( ( abs ‘ 𝑀 ) = 𝑀 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ 𝑀 ∥ 𝑁 ) ) | |
| 2 | 1 | bicomd | ⊢ ( ( abs ‘ 𝑀 ) = 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 3 | 2 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) ) |
| 4 | negdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) | |
| 5 | breq1 | ⊢ ( ( abs ‘ 𝑀 ) = - 𝑀 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) | |
| 6 | 5 | bicomd | ⊢ ( ( abs ‘ 𝑀 ) = - 𝑀 → ( - 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 7 | 4 6 | sylan9bb | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = - 𝑀 ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 8 | 7 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = - 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) ) |
| 9 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 10 | 9 | absord | ⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
| 12 | 3 8 11 | mpjaod | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |