This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count function, viewed as a function from NN to ( NN ^m Prime ) , is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc11 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) | |
| 2 | 1 | ralrimivw | ⊢ ( 𝐴 = 𝐵 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) |
| 3 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 4 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 5 | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) | |
| 6 | pcxcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ) |
| 8 | zq | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) | |
| 9 | pcxcl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
| 11 | 7 10 | anim12dan | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) ) |
| 12 | xrletri3 | ⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 14 | 13 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 15 | 14 | ralbidva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 16 | r19.26 | ⊢ ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 18 | pc2dvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) | |
| 19 | pc2dvds | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) | |
| 20 | 19 | ancoms | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
| 22 | 17 21 | bitr4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) ) |
| 23 | 3 4 22 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) ) |
| 24 | dvdseq | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) → 𝐴 = 𝐵 ) | |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → 𝐴 = 𝐵 ) ) |
| 26 | 23 25 | sylbid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 27 | 2 26 | impbid2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |