This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) = sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) | |
| 2 | 1 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ) |
| 3 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 4 | eqid | ⊢ { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } | |
| 5 | 4 1 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ∧ ( 𝑃 ↑ sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 ) ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ∧ ( 𝑃 ↑ sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ) ∥ 𝑁 ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → sup ( { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } , ℝ , < ) ∈ ℕ0 ) |
| 8 | 2 7 | eqeltrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |