This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc2dvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcdvdstr | |- ( ( p e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( p pCnt A ) <_ ( p pCnt B ) ) |
|
| 2 | 1 | ancoms | |- ( ( ( A e. ZZ /\ B e. ZZ /\ A || B ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt B ) ) |
| 3 | 2 | ralrimiva | |- ( ( A e. ZZ /\ B e. ZZ /\ A || B ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) |
| 4 | 3 | 3expia | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 5 | oveq2 | |- ( A = 0 -> ( p pCnt A ) = ( p pCnt 0 ) ) |
|
| 6 | 5 | breq1d | |- ( A = 0 -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt 0 ) <_ ( p pCnt B ) ) ) |
| 7 | 6 | ralbidv | |- ( A = 0 -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) <-> A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) ) |
| 8 | breq1 | |- ( A = 0 -> ( A || B <-> 0 || B ) ) |
|
| 9 | 7 8 | imbi12d | |- ( A = 0 -> ( ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) <-> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) ) |
| 10 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 11 | 10 | simpld | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) |
| 12 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 13 | 12 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 14 | simpl | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 15 | dvdsabsb | |- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A gcd B ) || ( abs ` A ) ) ) |
| 17 | 11 16 | mpbid | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || ( abs ` A ) ) |
| 18 | 17 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || ( abs ` A ) ) |
| 19 | simpl | |- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
|
| 20 | 19 | necon3ai | |- ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 21 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 22 | 20 21 | sylan2 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. NN ) |
| 23 | 22 | nnzd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. ZZ ) |
| 24 | 22 | nnne0d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) =/= 0 ) |
| 25 | nnabscl | |- ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
|
| 26 | 25 | adantlr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
| 27 | 26 | nnzd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. ZZ ) |
| 28 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ ( abs ` A ) e. ZZ ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) |
|
| 29 | 23 24 27 28 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) || ( abs ` A ) <-> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) ) |
| 30 | 18 29 | mpbid | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. ZZ ) |
| 31 | nnre | |- ( ( abs ` A ) e. NN -> ( abs ` A ) e. RR ) |
|
| 32 | nngt0 | |- ( ( abs ` A ) e. NN -> 0 < ( abs ` A ) ) |
|
| 33 | 31 32 | jca | |- ( ( abs ` A ) e. NN -> ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) ) |
| 34 | nnre | |- ( ( A gcd B ) e. NN -> ( A gcd B ) e. RR ) |
|
| 35 | nngt0 | |- ( ( A gcd B ) e. NN -> 0 < ( A gcd B ) ) |
|
| 36 | 34 35 | jca | |- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) |
| 37 | divgt0 | |- ( ( ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) /\ ( ( A gcd B ) e. RR /\ 0 < ( A gcd B ) ) ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
|
| 38 | 33 36 37 | syl2an | |- ( ( ( abs ` A ) e. NN /\ ( A gcd B ) e. NN ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
| 39 | 26 22 38 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 0 < ( ( abs ` A ) / ( A gcd B ) ) ) |
| 40 | elnnz | |- ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) e. ZZ /\ 0 < ( ( abs ` A ) / ( A gcd B ) ) ) ) |
|
| 41 | 30 39 40 | sylanbrc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) |
| 42 | elnn1uz2 | |- ( ( ( abs ` A ) / ( A gcd B ) ) e. NN <-> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) |
|
| 43 | 41 42 | sylib | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) ) |
| 44 | 10 | simprd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || B ) |
| 45 | 44 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) || B ) |
| 46 | breq1 | |- ( ( A gcd B ) = ( abs ` A ) -> ( ( A gcd B ) || B <-> ( abs ` A ) || B ) ) |
|
| 47 | 45 46 | syl5ibcom | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) = ( abs ` A ) -> ( abs ` A ) || B ) ) |
| 48 | 26 | nncnd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 49 | 22 | nncnd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A gcd B ) e. CC ) |
| 50 | 1cnd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> 1 e. CC ) |
|
| 51 | 48 49 50 24 | divmuld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( ( A gcd B ) x. 1 ) = ( abs ` A ) ) ) |
| 52 | 49 | mulridd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( A gcd B ) x. 1 ) = ( A gcd B ) ) |
| 53 | 52 | eqeq1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( A gcd B ) x. 1 ) = ( abs ` A ) <-> ( A gcd B ) = ( abs ` A ) ) ) |
| 54 | 51 53 | bitrd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 <-> ( A gcd B ) = ( abs ` A ) ) ) |
| 55 | absdvdsb | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> ( abs ` A ) || B ) ) |
|
| 56 | 55 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B <-> ( abs ` A ) || B ) ) |
| 57 | 47 54 56 | 3imtr4d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) = 1 -> A || B ) ) |
| 58 | exprmfct | |- ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) ) |
|
| 59 | simprl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p e. Prime ) |
|
| 60 | 26 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. NN ) |
| 61 | 60 | nnzd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. ZZ ) |
| 62 | 60 | nnne0d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) =/= 0 ) |
| 63 | 22 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd B ) e. NN ) |
| 64 | pcdiv | |- ( ( p e. Prime /\ ( ( abs ` A ) e. ZZ /\ ( abs ` A ) =/= 0 ) /\ ( A gcd B ) e. NN ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) |
|
| 65 | 59 61 62 63 64 | syl121anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) ) |
| 66 | simplll | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. ZZ ) |
|
| 67 | zq | |- ( A e. ZZ -> A e. QQ ) |
|
| 68 | 66 67 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A e. QQ ) |
| 69 | pcabs | |- ( ( p e. Prime /\ A e. QQ ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) |
|
| 70 | 59 68 69 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( abs ` A ) ) = ( p pCnt A ) ) |
| 71 | 70 | oveq1d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( abs ` A ) ) - ( p pCnt ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) |
| 72 | 65 71 | eqtrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) = ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) ) |
| 73 | simprr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> p || ( ( abs ` A ) / ( A gcd B ) ) ) |
|
| 74 | 41 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd B ) ) e. NN ) |
| 75 | pcelnn | |- ( ( p e. Prime /\ ( ( abs ` A ) / ( A gcd B ) ) e. NN ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) |
|
| 76 | 59 74 75 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN <-> p || ( ( abs ` A ) / ( A gcd B ) ) ) ) |
| 77 | 73 76 | mpbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( ( abs ` A ) / ( A gcd B ) ) ) e. NN ) |
| 78 | 72 77 | eqeltrrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) |
| 79 | 59 63 | pccld | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. NN0 ) |
| 80 | 79 | nn0zd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. ZZ ) |
| 81 | simplr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> A =/= 0 ) |
|
| 82 | pczcl | |- ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( p pCnt A ) e. NN0 ) |
|
| 83 | 59 66 81 82 | syl12anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. NN0 ) |
| 84 | 83 | nn0zd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. ZZ ) |
| 85 | znnsub | |- ( ( ( p pCnt ( A gcd B ) ) e. ZZ /\ ( p pCnt A ) e. ZZ ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) |
|
| 86 | 80 84 85 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> ( ( p pCnt A ) - ( p pCnt ( A gcd B ) ) ) e. NN ) ) |
| 87 | 78 86 | mpbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) < ( p pCnt A ) ) |
| 88 | 79 | nn0red | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) e. RR ) |
| 89 | 83 | nn0red | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) e. RR ) |
| 90 | 88 89 | ltnled | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt ( A gcd B ) ) < ( p pCnt A ) <-> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) |
| 91 | 87 90 | mpbid | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) |
| 92 | simpllr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B e. ZZ ) |
|
| 93 | nprmdvds1 | |- ( p e. Prime -> -. p || 1 ) |
|
| 94 | 93 | ad2antrl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || 1 ) |
| 95 | gcdid0 | |- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
|
| 96 | 66 95 | syl | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( A gcd 0 ) = ( abs ` A ) ) |
| 97 | 96 | oveq2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) |
| 98 | 48 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( abs ` A ) e. CC ) |
| 99 | 98 62 | dividd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) |
| 100 | 97 99 | eqtrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( abs ` A ) / ( A gcd 0 ) ) = 1 ) |
| 101 | 100 | breq2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p || ( ( abs ` A ) / ( A gcd 0 ) ) <-> p || 1 ) ) |
| 102 | 94 101 | mtbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. p || ( ( abs ` A ) / ( A gcd 0 ) ) ) |
| 103 | oveq2 | |- ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) |
|
| 104 | 103 | oveq2d | |- ( B = 0 -> ( ( abs ` A ) / ( A gcd B ) ) = ( ( abs ` A ) / ( A gcd 0 ) ) ) |
| 105 | 104 | breq2d | |- ( B = 0 -> ( p || ( ( abs ` A ) / ( A gcd B ) ) <-> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) |
| 106 | 73 105 | syl5ibcom | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( B = 0 -> p || ( ( abs ` A ) / ( A gcd 0 ) ) ) ) |
| 107 | 106 | necon3bd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( -. p || ( ( abs ` A ) / ( A gcd 0 ) ) -> B =/= 0 ) ) |
| 108 | 102 107 | mpd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> B =/= 0 ) |
| 109 | pczcl | |- ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. NN0 ) |
|
| 110 | 59 92 108 109 | syl12anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. NN0 ) |
| 111 | 110 | nn0red | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt B ) e. RR ) |
| 112 | lemin | |- ( ( ( p pCnt A ) e. RR /\ ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
|
| 113 | 89 89 111 112 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
| 114 | pcgcd | |- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
|
| 115 | 59 66 92 114 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 116 | 115 | breq2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) <-> ( p pCnt A ) <_ if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) ) |
| 117 | 89 | leidd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( p pCnt A ) <_ ( p pCnt A ) ) |
| 118 | 117 | biantrurd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( ( p pCnt A ) <_ ( p pCnt A ) /\ ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
| 119 | 113 116 118 | 3bitr4rd | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> ( ( p pCnt A ) <_ ( p pCnt B ) <-> ( p pCnt A ) <_ ( p pCnt ( A gcd B ) ) ) ) |
| 120 | 91 119 | mtbird | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ ( p e. Prime /\ p || ( ( abs ` A ) / ( A gcd B ) ) ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) |
| 121 | 120 | expr | |- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p || ( ( abs ` A ) / ( A gcd B ) ) -> -. ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 122 | 121 | reximdva | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 123 | rexnal | |- ( E. p e. Prime -. ( p pCnt A ) <_ ( p pCnt B ) <-> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) |
|
| 124 | 122 123 | imbitrdi | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( E. p e. Prime p || ( ( abs ` A ) / ( A gcd B ) ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 125 | 58 124 | syl5 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 126 | 57 125 | orim12d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) / ( A gcd B ) ) = 1 \/ ( ( abs ` A ) / ( A gcd B ) ) e. ( ZZ>= ` 2 ) ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) ) |
| 127 | 43 126 | mpd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A || B \/ -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 128 | 127 | ord | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( -. A || B -> -. A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |
| 129 | 128 | con4d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ A =/= 0 ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) |
| 130 | 2prm | |- 2 e. Prime |
|
| 131 | 130 | ne0ii | |- Prime =/= (/) |
| 132 | r19.2z | |- ( ( Prime =/= (/) /\ A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) |
|
| 133 | 131 132 | mpan | |- ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) ) |
| 134 | id | |- ( p e. Prime -> p e. Prime ) |
|
| 135 | zq | |- ( B e. ZZ -> B e. QQ ) |
|
| 136 | 135 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. QQ ) |
| 137 | pcxcl | |- ( ( p e. Prime /\ B e. QQ ) -> ( p pCnt B ) e. RR* ) |
|
| 138 | 134 136 137 | syl2anr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) e. RR* ) |
| 139 | pnfge | |- ( ( p pCnt B ) e. RR* -> ( p pCnt B ) <_ +oo ) |
|
| 140 | 138 139 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt B ) <_ +oo ) |
| 141 | 140 | biantrurd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( +oo <_ ( p pCnt B ) <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
| 142 | pc0 | |- ( p e. Prime -> ( p pCnt 0 ) = +oo ) |
|
| 143 | 142 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( p pCnt 0 ) = +oo ) |
| 144 | 143 | breq1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> +oo <_ ( p pCnt B ) ) ) |
| 145 | pnfxr | |- +oo e. RR* |
|
| 146 | xrletri3 | |- ( ( ( p pCnt B ) e. RR* /\ +oo e. RR* ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
|
| 147 | 138 145 146 | sylancl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo <-> ( ( p pCnt B ) <_ +oo /\ +oo <_ ( p pCnt B ) ) ) ) |
| 148 | 141 144 147 | 3bitr4d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) <-> ( p pCnt B ) = +oo ) ) |
| 149 | pnfnre | |- +oo e/ RR |
|
| 150 | 149 | neli | |- -. +oo e. RR |
| 151 | eleq1 | |- ( ( p pCnt B ) = +oo -> ( ( p pCnt B ) e. RR <-> +oo e. RR ) ) |
|
| 152 | 150 151 | mtbiri | |- ( ( p pCnt B ) = +oo -> -. ( p pCnt B ) e. RR ) |
| 153 | 109 | nn0red | |- ( ( p e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
| 154 | 153 | adantll | |- ( ( ( A e. ZZ /\ p e. Prime ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
| 155 | 154 | an4s | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( p e. Prime /\ B =/= 0 ) ) -> ( p pCnt B ) e. RR ) |
| 156 | 155 | expr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( B =/= 0 -> ( p pCnt B ) e. RR ) ) |
| 157 | 156 | necon1bd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( -. ( p pCnt B ) e. RR -> B = 0 ) ) |
| 158 | 152 157 | syl5 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt B ) = +oo -> B = 0 ) ) |
| 159 | 148 158 | sylbid | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ p e. Prime ) -> ( ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) |
| 160 | 159 | rexlimdva | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> B = 0 ) ) |
| 161 | 0dvds | |- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
|
| 162 | 161 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 0 || B <-> B = 0 ) ) |
| 163 | 160 162 | sylibrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) |
| 164 | 133 163 | syl5 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt 0 ) <_ ( p pCnt B ) -> 0 || B ) ) |
| 165 | 9 129 164 | pm2.61ne | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) -> A || B ) ) |
| 166 | 4 165 | impbid | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || B <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt B ) ) ) |