This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive difference of unequal integers is a positive integer. (Generalization of nnsub .) (Contributed by NM, 11-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | znnsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | posdif | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 < 𝑁 ↔ 0 < ( 𝑁 − 𝑀 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 0 < ( 𝑁 − 𝑀 ) ) ) |
| 5 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 − 𝑀 ) ∈ ℤ ) |
| 7 | 6 | biantrurd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 < ( 𝑁 − 𝑀 ) ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 < ( 𝑁 − 𝑀 ) ) ) ) |
| 8 | 4 7 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 < ( 𝑁 − 𝑀 ) ) ) ) |
| 9 | elnnz | ⊢ ( ( 𝑁 − 𝑀 ) ∈ ℕ ↔ ( ( 𝑁 − 𝑀 ) ∈ ℤ ∧ 0 < ( 𝑁 − 𝑀 ) ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |