This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsval2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) ) |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 6 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 8 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 11 | simpl2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → 𝑀 ≠ 0 ) | |
| 12 | 5 7 10 11 | divmul3d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) = 𝑘 ↔ 𝑁 = ( 𝑘 · 𝑀 ) ) ) |
| 13 | eqcom | ⊢ ( 𝑁 = ( 𝑘 · 𝑀 ) ↔ ( 𝑘 · 𝑀 ) = 𝑁 ) | |
| 14 | 12 13 | bitrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) = 𝑘 ↔ ( 𝑘 · 𝑀 ) = 𝑁 ) ) |
| 15 | 14 | biimprd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝑀 ) = 𝑁 → ( 𝑁 / 𝑀 ) = 𝑘 ) ) |
| 16 | 15 | impr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 𝑀 ) = 𝑁 ) ) → ( 𝑁 / 𝑀 ) = 𝑘 ) |
| 17 | simprl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 𝑀 ) = 𝑁 ) ) → 𝑘 ∈ ℤ ) | |
| 18 | 16 17 | eqeltrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 𝑀 ) = 𝑁 ) ) → ( 𝑁 / 𝑀 ) ∈ ℤ ) |
| 19 | 18 | rexlimdvaa | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 → ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 20 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 / 𝑀 ) ∈ ℤ ) → ( 𝑁 / 𝑀 ) ∈ ℤ ) | |
| 21 | simp2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → 𝑀 ≠ 0 ) | |
| 22 | 4 9 21 | divcan1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 / 𝑀 ) ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) |
| 24 | oveq1 | ⊢ ( 𝑘 = ( 𝑁 / 𝑀 ) → ( 𝑘 · 𝑀 ) = ( ( 𝑁 / 𝑀 ) · 𝑀 ) ) | |
| 25 | 24 | eqeq1d | ⊢ ( 𝑘 = ( 𝑁 / 𝑀 ) → ( ( 𝑘 · 𝑀 ) = 𝑁 ↔ ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) ) |
| 26 | 25 | rspcev | ⊢ ( ( ( 𝑁 / 𝑀 ) ∈ ℤ ∧ ( ( 𝑁 / 𝑀 ) · 𝑀 ) = 𝑁 ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) |
| 27 | 20 23 26 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 / 𝑀 ) ∈ ℤ ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) |
| 28 | 27 | ex | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 / 𝑀 ) ∈ ℤ → ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) ) |
| 29 | 19 28 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |
| 30 | 2 29 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℤ ) ) |