This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002) (Proof shortened by Steven Nguyen, 23-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | div1d | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 / 1 ) = 𝐴 ) |
| 3 | 1nn | ⊢ 1 ∈ ℕ | |
| 4 | znq | ⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ∈ ℕ ) → ( 𝐴 / 1 ) ∈ ℚ ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 / 1 ) ∈ ℚ ) |
| 6 | 2 5 | eqeltrrd | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |