This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are a positive number of powers of a prime P in N iff P divides N . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcelnn | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℕ0 ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) | |
| 4 | 2 3 | mp3an3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) |
| 6 | pccl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 7 | elnnnn0c | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ∧ 1 ≤ ( 𝑃 pCnt 𝑁 ) ) ) | |
| 8 | 7 | baibr | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
| 10 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 11 | 10 | nncnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 12 | 11 | exp1d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 14 | 13 | breq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 1 ) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
| 15 | 5 9 14 | 3bitr3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |