This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | dvds0 | ⊢ ( 0 ∈ ℤ → 0 ∥ 0 ) | |
| 3 | 1 2 | ax-mp | ⊢ 0 ∥ 0 |
| 4 | breq2 | ⊢ ( 𝑀 = 0 → ( 0 ∥ 𝑀 ↔ 0 ∥ 0 ) ) | |
| 5 | breq2 | ⊢ ( 𝑁 = 0 → ( 0 ∥ 𝑁 ↔ 0 ∥ 0 ) ) | |
| 6 | 4 5 | bi2anan9 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ↔ ( 0 ∥ 0 ∧ 0 ∥ 0 ) ) ) |
| 7 | anidm | ⊢ ( ( 0 ∥ 0 ∧ 0 ∥ 0 ) ↔ 0 ∥ 0 ) | |
| 8 | 6 7 | bitrdi | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ↔ 0 ∥ 0 ) ) |
| 9 | 3 8 | mpbiri | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) |
| 10 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd 𝑁 ) = ( 0 gcd 0 ) ) | |
| 11 | gcd0val | ⊢ ( 0 gcd 0 ) = 0 | |
| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd 𝑁 ) = 0 ) |
| 13 | 12 | breq1d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ 0 ∥ 𝑀 ) ) |
| 14 | 12 | breq1d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 15 | 13 14 | anbi12d | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ↔ ( 0 ∥ 𝑀 ∧ 0 ∥ 𝑁 ) ) ) |
| 16 | 9 15 | mpbird | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 18 | eqid | ⊢ { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } = { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } | |
| 19 | eqid | ⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } | |
| 20 | 18 19 | gcdcllem3 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∈ ℕ ∧ ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ∧ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ∧ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) ) |
| 21 | 20 | simp2d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ∧ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ) |
| 22 | gcdn0val | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) | |
| 23 | 22 | breq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ) ) |
| 24 | 22 | breq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ) |
| 25 | 23 24 | anbi12d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ↔ ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ∧ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ) ) |
| 26 | 21 25 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 27 | 17 26 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |