This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcgcd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcgcd1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 2 | iftrue | ⊢ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 4 | 1 3 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |
| 5 | gcdcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) ) |
| 9 | iffalse | ⊢ ( ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐵 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
| 11 | zq | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) | |
| 12 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) | |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
| 15 | zq | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) | |
| 16 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) | |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
| 18 | xrletri | ⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∨ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) | |
| 19 | 14 17 18 | 3imp3i2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∨ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
| 20 | 19 | orcanai | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 21 | 3ancomb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) | |
| 22 | pcgcd1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) | |
| 23 | 21 22 | sylanb | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
| 24 | 20 23 | syldan | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
| 25 | 10 24 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) ) |
| 26 | 8 25 | eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |
| 27 | 4 26 | pm2.61dan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |