This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | zq | ⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) | |
| 3 | 1 2 | ax-mp | ⊢ 0 ∈ ℚ |
| 4 | iftrue | ⊢ ( 𝑟 = 0 → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = +∞ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 0 ) → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = +∞ ) |
| 6 | df-pc | ⊢ pCnt = ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) | |
| 7 | pnfex | ⊢ +∞ ∈ V | |
| 8 | 5 6 7 | ovmpoa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 0 ∈ ℚ ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 9 | 3 8 | mpan2 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |