This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcabs | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 3 | pcneg | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) | |
| 4 | oveq2 | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt - 𝐴 ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 6 | 3 5 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
| 7 | qre | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → 𝐴 ∈ ℝ ) |
| 9 | 8 | absord | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
| 10 | 2 6 9 | mpjaod | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |