This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdvdstr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | zq | ⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) | |
| 3 | 1 2 | ax-mp | ⊢ 0 ∈ ℚ |
| 4 | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 0 ∈ ℚ ) → ( 𝑃 pCnt 0 ) ∈ ℝ* ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
| 6 | 5 | xrleidd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 0 ) ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 0 ) ) |
| 8 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 9 | 8 | oveq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) |
| 10 | simplr3 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐴 ∥ 𝐵 ) | |
| 11 | 8 10 | eqbrtrrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 0 ∥ 𝐵 ) |
| 12 | simplr2 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℤ ) | |
| 13 | 0dvds | ⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| 15 | 11 14 | mpbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐵 = 0 ) |
| 16 | 15 | oveq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt 0 ) ) |
| 17 | 7 9 16 | 3brtr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 18 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝑃 ∈ ℕ ) |
| 20 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝑃 ∈ ℙ ) | |
| 21 | simplr1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℤ ) | |
| 22 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 23 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 24 | 20 21 22 23 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 25 | 19 24 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 26 | 25 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 27 | simplr2 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℤ ) | |
| 28 | pczdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) | |
| 29 | 20 21 22 28 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 30 | simplr3 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∥ 𝐵 ) | |
| 31 | 26 21 27 29 30 | dvdstrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) |
| 32 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) | |
| 33 | 20 27 24 32 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
| 35 | 17 34 | pm2.61dane | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |