This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn1uz2 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) | |
| 2 | 1 | orbi2i | ⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ↔ ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ) |
| 3 | exmidne | ⊢ ( 𝑁 = 1 ∨ 𝑁 ≠ 1 ) | |
| 4 | ordi | ⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ∧ ( 𝑁 = 1 ∨ 𝑁 ≠ 1 ) ) ) | |
| 5 | 3 4 | mpbiran2 | ⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ) |
| 6 | 1nn | ⊢ 1 ∈ ℕ | |
| 7 | eleq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ ↔ 1 ∈ ℕ ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝑁 = 1 → 𝑁 ∈ ℕ ) |
| 9 | pm2.621 | ⊢ ( ( 𝑁 = 1 → 𝑁 ∈ ℕ ) → ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 11 | olc | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ) | |
| 12 | 10 11 | impbii | ⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ↔ 𝑁 ∈ ℕ ) |
| 13 | 2 5 12 | 3bitrri | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |