This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcxcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | 1 2 | eqeltrdi | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
| 5 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ↔ ( 𝑃 pCnt 0 ) ∈ ℝ* ) ) |
| 7 | 4 6 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
| 8 | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) | |
| 9 | 8 | zred | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ ) |
| 10 | 9 | rexrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |
| 11 | 10 | expr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑁 ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) ) |
| 12 | 7 11 | pm2.61dne | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℝ* ) |