This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝑃 ∈ ℙ ) | |
| 2 | simp2l | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 3 | simp3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) | |
| 4 | znq | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 6 | 2 | zcnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 7 | 3 | nncnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 8 | simp2r | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ≠ 0 ) | |
| 9 | 3 | nnne0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 10 | 6 7 8 9 | divne0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≠ 0 ) |
| 11 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| 12 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | |
| 13 | 11 12 | pcval | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 14 | 1 5 10 13 | syl12anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 15 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) | |
| 16 | 15 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 18 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 19 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 20 | 18 19 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 21 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) | |
| 22 | 21 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 23 | 20 22 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 24 | 23 | 3adant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 25 | 17 24 | oveq12d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
| 26 | eqid | ⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) | |
| 27 | 25 26 | jctil | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 / 𝑦 ) = ( 𝐴 / 𝑦 ) ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ) ) |
| 30 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 ) ) | |
| 31 | 30 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } ) |
| 32 | 31 | supeq1d | ⊢ ( 𝑥 = 𝐴 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 33 | 32 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
| 34 | 33 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 35 | 29 34 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) | |
| 37 | 36 | eqeq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ) ) |
| 38 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 ) ) | |
| 39 | 38 | rabbidv | ⊢ ( 𝑦 = 𝐵 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } ) |
| 40 | 39 | supeq1d | ⊢ ( 𝑦 = 𝐵 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
| 42 | 41 | eqeq2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
| 43 | 37 42 | anbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) ) |
| 44 | 35 43 | rspc2ev | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 45 | 2 3 27 44 | syl3anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 46 | ovex | ⊢ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V | |
| 47 | 11 12 | pceu | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 48 | 1 5 10 47 | syl12anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 49 | eqeq1 | ⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) | |
| 50 | 49 | anbi2d | ⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 51 | 50 | 2rexbidv | ⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 52 | 51 | iota2 | ⊢ ( ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V ∧ ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 53 | 46 48 52 | sylancr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 54 | 45 53 | mpbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |
| 55 | 14 54 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |