This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logccv | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) < ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ+ ) | |
| 2 | 1 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
| 3 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ+ ) | |
| 4 | 3 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ ) |
| 5 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 < 𝐵 ) | |
| 6 | 1 | rpgt0d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 0 < 𝐴 ) |
| 7 | 4 | ltpnfd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 < +∞ ) |
| 8 | 0xr | ⊢ 0 ∈ ℝ* | |
| 9 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 10 | iccssioo | ⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 < 𝐴 ∧ 𝐵 < +∞ ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) | |
| 11 | 8 9 10 | mpanl12 | ⊢ ( ( 0 < 𝐴 ∧ 𝐵 < +∞ ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) |
| 12 | 6 7 11 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 0 (,) +∞ ) ) |
| 13 | ioorp | ⊢ ( 0 (,) +∞ ) = ℝ+ | |
| 14 | 12 13 | sseqtrdi | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ+ ) |
| 15 | 14 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ+ ) |
| 16 | 15 | relogcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 17 | 16 | renegcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( log ‘ 𝑥 ) ∈ ℝ ) |
| 18 | 17 | fmpttd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 19 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 20 | 14 | resabs1d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( log ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 21 | ssid | ⊢ ℂ ⊆ ℂ | |
| 22 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) ) | |
| 23 | 19 21 22 | mp2an | ⊢ ( ℝ+ –cn→ ℝ ) ⊆ ( ℝ+ –cn→ ℂ ) |
| 24 | relogcn | ⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) | |
| 25 | 23 24 | sselii | ⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) |
| 26 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ+ → ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 27 | 14 25 26 | mpisyl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( log ↾ ℝ+ ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 28 | 20 27 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 29 | fvres | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) | |
| 30 | 29 | negeqd | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) = - ( log ‘ 𝑥 ) ) |
| 31 | 30 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) |
| 32 | 31 | eqcomi | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑥 ) ) |
| 33 | 32 | negfcncf | ⊢ ( ( log ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 34 | 28 33 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 35 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | |
| 36 | 19 34 35 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 37 | 18 36 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 38 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 39 | ltso | ⊢ < Or ℝ | |
| 40 | soss | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( < Or ℝ → < Or ( 𝐴 (,) 𝐵 ) ) ) | |
| 41 | 38 39 40 | mp2 | ⊢ < Or ( 𝐴 (,) 𝐵 ) |
| 42 | 41 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Or ( 𝐴 (,) 𝐵 ) ) |
| 43 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 44 | 43 14 | sstrid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ+ ) |
| 45 | 44 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ+ ) |
| 46 | 45 | rprecred | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 47 | 46 | renegcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → - ( 1 / 𝑥 ) ∈ ℝ ) |
| 48 | 47 | fmpttd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 49 | 48 | frnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ⊆ ℝ ) |
| 50 | soss | ⊢ ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ⊆ ℝ → ( < Or ℝ → < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) | |
| 51 | 49 39 50 | mpisyl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 52 | sopo | ⊢ ( < Or ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) → < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 54 | negex | ⊢ - ( 1 / 𝑥 ) ∈ V | |
| 55 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) | |
| 56 | 54 55 | fnmpti | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Fn ( 𝐴 (,) 𝐵 ) |
| 57 | dffn4 | ⊢ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Fn ( 𝐴 (,) 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) | |
| 58 | 56 57 | mpbi | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) |
| 59 | 58 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 60 | 44 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 ∈ ℝ+ ) |
| 61 | 60 | adantrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝑧 ∈ ℝ+ ) |
| 62 | 61 | rprecred | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 1 / 𝑧 ) ∈ ℝ ) |
| 63 | 44 | sselda | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ℝ+ ) |
| 64 | 63 | adantrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝑦 ∈ ℝ+ ) |
| 65 | 64 | rprecred | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 66 | 62 65 | ltnegd | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( ( 1 / 𝑧 ) < ( 1 / 𝑦 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 67 | 64 61 | ltrecd | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 ↔ ( 1 / 𝑧 ) < ( 1 / 𝑦 ) ) ) |
| 68 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 1 / 𝑥 ) = ( 1 / 𝑦 ) ) | |
| 69 | 68 | negeqd | ⊢ ( 𝑥 = 𝑦 → - ( 1 / 𝑥 ) = - ( 1 / 𝑦 ) ) |
| 70 | negex | ⊢ - ( 1 / 𝑦 ) ∈ V | |
| 71 | 69 55 70 | fvmpt | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) = - ( 1 / 𝑦 ) ) |
| 72 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 1 / 𝑥 ) = ( 1 / 𝑧 ) ) | |
| 73 | 72 | negeqd | ⊢ ( 𝑥 = 𝑧 → - ( 1 / 𝑥 ) = - ( 1 / 𝑧 ) ) |
| 74 | negex | ⊢ - ( 1 / 𝑧 ) ∈ V | |
| 75 | 73 55 74 | fvmpt | ⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) = - ( 1 / 𝑧 ) ) |
| 76 | 71 75 | breqan12d | ⊢ ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ↔ - ( 1 / 𝑦 ) < - ( 1 / 𝑧 ) ) ) |
| 78 | 66 67 77 | 3bitr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 ↔ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 79 | 78 | biimpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 80 | 79 | ralrimivva | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) |
| 81 | soisoi | ⊢ ( ( ( < Or ( 𝐴 (,) 𝐵 ) ∧ < Po ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ∧ ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) : ( 𝐴 (,) 𝐵 ) –onto→ ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( 𝑦 < 𝑧 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑦 ) < ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ‘ 𝑧 ) ) ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) | |
| 82 | 42 53 59 80 81 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 83 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 84 | 83 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 85 | relogcl | ⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) | |
| 86 | 85 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 87 | 86 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 88 | 87 | negcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → - ( log ‘ 𝑥 ) ∈ ℂ ) |
| 89 | 54 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → - ( 1 / 𝑥 ) ∈ V ) |
| 90 | ovexd | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ V ) | |
| 91 | relogf1o | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ | |
| 92 | f1of | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) | |
| 93 | 91 92 | mp1i | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 94 | 93 | feqmptd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 95 | fvres | ⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) | |
| 96 | 95 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 97 | 94 96 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 98 | 97 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
| 99 | dvrelog | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) | |
| 100 | 98 99 | eqtr3di | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 101 | 84 87 90 100 | dvmptneg | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ - ( 1 / 𝑥 ) ) ) |
| 102 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 103 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 104 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 105 | 2 4 104 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 106 | 84 88 89 101 14 102 103 105 | dvmptres2 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) |
| 107 | isoeq1 | ⊢ ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) ) |
| 109 | 82 108 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 1 / 𝑥 ) ) ) ) |
| 110 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) | |
| 111 | eqid | ⊢ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) | |
| 112 | 2 4 5 37 109 110 111 | dvcvx | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) ) |
| 113 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 114 | elioore | ⊢ ( 𝑇 ∈ ( 0 (,) 1 ) → 𝑇 ∈ ℝ ) | |
| 115 | 114 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℝ ) |
| 116 | 115 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℂ ) |
| 117 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) | |
| 118 | 113 116 117 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 119 | 118 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) = ( 𝑇 · 𝐴 ) ) |
| 120 | 119 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) |
| 121 | ioossicc | ⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) | |
| 122 | 121 110 | sselid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 123 | iirev | ⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) | |
| 124 | 122 123 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 125 | lincmb01cmp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 126 | 2 4 5 124 125 | syl31anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 127 | 120 126 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 128 | fveq2 | ⊢ ( 𝑥 = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) → ( log ‘ 𝑥 ) = ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) | |
| 129 | 128 | negeqd | ⊢ ( 𝑥 = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) → - ( log ‘ 𝑥 ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 130 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) | |
| 131 | negex | ⊢ - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ∈ V | |
| 132 | 129 130 131 | fvmpt | ⊢ ( ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 133 | 127 132 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 134 | 1 | rpxrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ* ) |
| 135 | 3 | rpxrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ* ) |
| 136 | 2 4 5 | ltled | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ≤ 𝐵 ) |
| 137 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 138 | 134 135 136 137 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 139 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) | |
| 140 | 139 | negeqd | ⊢ ( 𝑥 = 𝐴 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝐴 ) ) |
| 141 | negex | ⊢ - ( log ‘ 𝐴 ) ∈ V | |
| 142 | 140 130 141 | fvmpt | ⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) = - ( log ‘ 𝐴 ) ) |
| 143 | 138 142 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) = - ( log ‘ 𝐴 ) ) |
| 144 | 143 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) = ( 𝑇 · - ( log ‘ 𝐴 ) ) ) |
| 145 | 1 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 146 | 145 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 147 | 116 146 | mulneg2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · - ( log ‘ 𝐴 ) ) = - ( 𝑇 · ( log ‘ 𝐴 ) ) ) |
| 148 | 144 147 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) = - ( 𝑇 · ( log ‘ 𝐴 ) ) ) |
| 149 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 150 | 134 135 136 149 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( log ‘ 𝑥 ) = ( log ‘ 𝐵 ) ) | |
| 152 | 151 | negeqd | ⊢ ( 𝑥 = 𝐵 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝐵 ) ) |
| 153 | negex | ⊢ - ( log ‘ 𝐵 ) ∈ V | |
| 154 | 152 130 153 | fvmpt | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) = - ( log ‘ 𝐵 ) ) |
| 155 | 150 154 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) = - ( log ‘ 𝐵 ) ) |
| 156 | 155 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 1 − 𝑇 ) · - ( log ‘ 𝐵 ) ) ) |
| 157 | 1re | ⊢ 1 ∈ ℝ | |
| 158 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( 1 − 𝑇 ) ∈ ℝ ) | |
| 159 | 157 115 158 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 160 | 159 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 161 | 3 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 162 | 161 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 163 | 160 162 | mulneg2d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · - ( log ‘ 𝐵 ) ) = - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) |
| 164 | 156 163 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) = - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) |
| 165 | 148 164 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) = ( - ( 𝑇 · ( log ‘ 𝐴 ) ) + - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 166 | 115 145 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 167 | 166 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 168 | 159 161 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ∈ ℝ ) |
| 169 | 168 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 170 | 167 169 | negdid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) = ( - ( 𝑇 · ( log ‘ 𝐴 ) ) + - ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 171 | 165 170 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( log ‘ 𝑥 ) ) ‘ 𝐵 ) ) ) = - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 172 | 112 133 171 | 3brtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) |
| 173 | 166 168 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 174 | 14 127 | sseldd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ℝ+ ) |
| 175 | 174 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ∈ ℝ ) |
| 176 | 173 175 | ltnegd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) < ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ↔ - ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < - ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) ) ) |
| 177 | 172 176 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( log ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( log ‘ 𝐵 ) ) ) < ( log ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |