This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on the reals is a strictly concave function. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logccv | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR+ ) |
|
| 2 | 1 | rpred | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) |
| 3 | simpl2 | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR+ ) |
|
| 4 | 3 | rpred | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) |
| 5 | simpl3 | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) |
|
| 6 | 1 | rpgt0d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> 0 < A ) |
| 7 | 4 | ltpnfd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B < +oo ) |
| 8 | 0xr | |- 0 e. RR* |
|
| 9 | pnfxr | |- +oo e. RR* |
|
| 10 | iccssioo | |- ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 < A /\ B < +oo ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
|
| 11 | 8 9 10 | mpanl12 | |- ( ( 0 < A /\ B < +oo ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
| 12 | 6 7 11 | syl2anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ ( 0 (,) +oo ) ) |
| 13 | ioorp | |- ( 0 (,) +oo ) = RR+ |
|
| 14 | 12 13 | sseqtrdi | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR+ ) |
| 15 | 14 | sselda | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> x e. RR+ ) |
| 16 | 15 | relogcld | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> ( log ` x ) e. RR ) |
| 17 | 16 | renegcld | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A [,] B ) ) -> -u ( log ` x ) e. RR ) |
| 18 | 17 | fmpttd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) |
| 19 | ax-resscn | |- RR C_ CC |
|
| 20 | 14 | resabs1d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) = ( log |` ( A [,] B ) ) ) |
| 21 | ssid | |- CC C_ CC |
|
| 22 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) ) |
|
| 23 | 19 21 22 | mp2an | |- ( RR+ -cn-> RR ) C_ ( RR+ -cn-> CC ) |
| 24 | relogcn | |- ( log |` RR+ ) e. ( RR+ -cn-> RR ) |
|
| 25 | 23 24 | sselii | |- ( log |` RR+ ) e. ( RR+ -cn-> CC ) |
| 26 | rescncf | |- ( ( A [,] B ) C_ RR+ -> ( ( log |` RR+ ) e. ( RR+ -cn-> CC ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
|
| 27 | 14 25 26 | mpisyl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( log |` RR+ ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 28 | 20 27 | eqeltrrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 29 | fvres | |- ( x e. ( A [,] B ) -> ( ( log |` ( A [,] B ) ) ` x ) = ( log ` x ) ) |
|
| 30 | 29 | negeqd | |- ( x e. ( A [,] B ) -> -u ( ( log |` ( A [,] B ) ) ` x ) = -u ( log ` x ) ) |
| 31 | 30 | mpteq2ia | |- ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
| 32 | 31 | eqcomi | |- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( ( log |` ( A [,] B ) ) ` x ) ) |
| 33 | 32 | negfcncf | |- ( ( log |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 34 | 28 33 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 35 | cncfcdm | |- ( ( RR C_ CC /\ ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
|
| 36 | 19 34 35 | sylancr | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) : ( A [,] B ) --> RR ) ) |
| 37 | 18 36 | mpbird | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A [,] B ) |-> -u ( log ` x ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 38 | ioossre | |- ( A (,) B ) C_ RR |
|
| 39 | ltso | |- < Or RR |
|
| 40 | soss | |- ( ( A (,) B ) C_ RR -> ( < Or RR -> < Or ( A (,) B ) ) ) |
|
| 41 | 38 39 40 | mp2 | |- < Or ( A (,) B ) |
| 42 | 41 | a1i | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ( A (,) B ) ) |
| 43 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 44 | 43 14 | sstrid | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR+ ) |
| 45 | 44 | sselda | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> x e. RR+ ) |
| 46 | 45 | rprecred | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> ( 1 / x ) e. RR ) |
| 47 | 46 | renegcld | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. ( A (,) B ) ) -> -u ( 1 / x ) e. RR ) |
| 48 | 47 | fmpttd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) --> RR ) |
| 49 | 48 | frnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR ) |
| 50 | soss | |- ( ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) C_ RR -> ( < Or RR -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
|
| 51 | 49 39 50 | mpisyl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 52 | sopo | |- ( < Or ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
|
| 53 | 51 52 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 54 | negex | |- -u ( 1 / x ) e. _V |
|
| 55 | eqid | |- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
|
| 56 | 54 55 | fnmpti | |- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) |
| 57 | dffn4 | |- ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Fn ( A (,) B ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
|
| 58 | 56 57 | mpbi | |- ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) |
| 59 | 58 | a1i | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 60 | 44 | sselda | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ z e. ( A (,) B ) ) -> z e. RR+ ) |
| 61 | 60 | adantrl | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> z e. RR+ ) |
| 62 | 61 | rprecred | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / z ) e. RR ) |
| 63 | 44 | sselda | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ y e. ( A (,) B ) ) -> y e. RR+ ) |
| 64 | 63 | adantrr | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> y e. RR+ ) |
| 65 | 64 | rprecred | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( 1 / y ) e. RR ) |
| 66 | 62 65 | ltnegd | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( 1 / z ) < ( 1 / y ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 67 | 64 61 | ltrecd | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( 1 / z ) < ( 1 / y ) ) ) |
| 68 | oveq2 | |- ( x = y -> ( 1 / x ) = ( 1 / y ) ) |
|
| 69 | 68 | negeqd | |- ( x = y -> -u ( 1 / x ) = -u ( 1 / y ) ) |
| 70 | negex | |- -u ( 1 / y ) e. _V |
|
| 71 | 69 55 70 | fvmpt | |- ( y e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) = -u ( 1 / y ) ) |
| 72 | oveq2 | |- ( x = z -> ( 1 / x ) = ( 1 / z ) ) |
|
| 73 | 72 | negeqd | |- ( x = z -> -u ( 1 / x ) = -u ( 1 / z ) ) |
| 74 | negex | |- -u ( 1 / z ) e. _V |
|
| 75 | 73 55 74 | fvmpt | |- ( z e. ( A (,) B ) -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) = -u ( 1 / z ) ) |
| 76 | 71 75 | breqan12d | |- ( ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 77 | 76 | adantl | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) <-> -u ( 1 / y ) < -u ( 1 / z ) ) ) |
| 78 | 66 67 77 | 3bitr4d | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z <-> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 79 | 78 | biimpd | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ ( y e. ( A (,) B ) /\ z e. ( A (,) B ) ) ) -> ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 80 | 79 | ralrimivva | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) |
| 81 | soisoi | |- ( ( ( < Or ( A (,) B ) /\ < Po ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) /\ ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) : ( A (,) B ) -onto-> ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) /\ A. y e. ( A (,) B ) A. z e. ( A (,) B ) ( y < z -> ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` y ) < ( ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ` z ) ) ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
|
| 82 | 42 53 59 80 81 | syl22anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 83 | reelprrecn | |- RR e. { RR , CC } |
|
| 84 | 83 | a1i | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> RR e. { RR , CC } ) |
| 85 | relogcl | |- ( x e. RR+ -> ( log ` x ) e. RR ) |
|
| 86 | 85 | adantl | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 87 | 86 | recnd | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 88 | 87 | negcld | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( log ` x ) e. CC ) |
| 89 | 54 | a1i | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
| 90 | ovexd | |- ( ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) /\ x e. RR+ ) -> ( 1 / x ) e. _V ) |
|
| 91 | relogf1o | |- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
|
| 92 | f1of | |- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
|
| 93 | 91 92 | mp1i | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
| 94 | 93 | feqmptd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 95 | fvres | |- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
|
| 96 | 95 | mpteq2ia | |- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 97 | 94 96 | eqtrdi | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 98 | 97 | oveq2d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 99 | dvrelog | |- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
|
| 100 | 98 99 | eqtr3di | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 101 | 84 87 90 100 | dvmptneg | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. RR+ |-> -u ( log ` x ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
| 102 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 103 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 104 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 105 | 2 4 104 | syl2anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 106 | 84 88 89 101 14 102 103 105 | dvmptres2 | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) |
| 107 | isoeq1 | |- ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) = ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
|
| 108 | 106 107 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) <-> ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) ) |
| 109 | 82 108 | mpbird | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ) Isom < , < ( ( A (,) B ) , ran ( x e. ( A (,) B ) |-> -u ( 1 / x ) ) ) ) |
| 110 | simpr | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) |
|
| 111 | eqid | |- ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) |
|
| 112 | 2 4 5 37 109 110 111 | dvcvx | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) ) |
| 113 | ax-1cn | |- 1 e. CC |
|
| 114 | elioore | |- ( T e. ( 0 (,) 1 ) -> T e. RR ) |
|
| 115 | 114 | adantl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) |
| 116 | 115 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) |
| 117 | nncan | |- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
|
| 118 | 113 116 117 | sylancr | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) |
| 119 | 118 | oveq1d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) |
| 120 | 119 | oveq1d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) |
| 121 | ioossicc | |- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
|
| 122 | 121 110 | sselid | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) |
| 123 | iirev | |- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
|
| 124 | 122 123 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 125 | lincmb01cmp | |- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
|
| 126 | 2 4 5 124 125 | syl31anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 127 | 120 126 | eqeltrrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) |
| 128 | fveq2 | |- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> ( log ` x ) = ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
|
| 129 | 128 | negeqd | |- ( x = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) -> -u ( log ` x ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 130 | eqid | |- ( x e. ( A [,] B ) |-> -u ( log ` x ) ) = ( x e. ( A [,] B ) |-> -u ( log ` x ) ) |
|
| 131 | negex | |- -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. _V |
|
| 132 | 129 130 131 | fvmpt | |- ( ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 133 | 127 132 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |
| 134 | 1 | rpxrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) |
| 135 | 3 | rpxrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) |
| 136 | 2 4 5 | ltled | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) |
| 137 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 138 | 134 135 136 137 | syl3anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) |
| 139 | fveq2 | |- ( x = A -> ( log ` x ) = ( log ` A ) ) |
|
| 140 | 139 | negeqd | |- ( x = A -> -u ( log ` x ) = -u ( log ` A ) ) |
| 141 | negex | |- -u ( log ` A ) e. _V |
|
| 142 | 140 130 141 | fvmpt | |- ( A e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
| 143 | 138 142 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) = -u ( log ` A ) ) |
| 144 | 143 | oveq2d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = ( T x. -u ( log ` A ) ) ) |
| 145 | 1 | relogcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. RR ) |
| 146 | 145 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` A ) e. CC ) |
| 147 | 116 146 | mulneg2d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. -u ( log ` A ) ) = -u ( T x. ( log ` A ) ) ) |
| 148 | 144 147 | eqtrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) = -u ( T x. ( log ` A ) ) ) |
| 149 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 150 | 134 135 136 149 | syl3anc | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) |
| 151 | fveq2 | |- ( x = B -> ( log ` x ) = ( log ` B ) ) |
|
| 152 | 151 | negeqd | |- ( x = B -> -u ( log ` x ) = -u ( log ` B ) ) |
| 153 | negex | |- -u ( log ` B ) e. _V |
|
| 154 | 152 130 153 | fvmpt | |- ( B e. ( A [,] B ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
| 155 | 150 154 | syl | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) = -u ( log ` B ) ) |
| 156 | 155 | oveq2d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = ( ( 1 - T ) x. -u ( log ` B ) ) ) |
| 157 | 1re | |- 1 e. RR |
|
| 158 | resubcl | |- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
|
| 159 | 157 115 158 | sylancr | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. RR ) |
| 160 | 159 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. CC ) |
| 161 | 3 | relogcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. RR ) |
| 162 | 161 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` B ) e. CC ) |
| 163 | 160 162 | mulneg2d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. -u ( log ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
| 164 | 156 163 | eqtrd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) = -u ( ( 1 - T ) x. ( log ` B ) ) ) |
| 165 | 148 164 | oveq12d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 166 | 115 145 | remulcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. RR ) |
| 167 | 166 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( log ` A ) ) e. CC ) |
| 168 | 159 161 | remulcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. RR ) |
| 169 | 168 | recnd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( log ` B ) ) e. CC ) |
| 170 | 167 169 | negdid | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) = ( -u ( T x. ( log ` A ) ) + -u ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 171 | 165 170 | eqtr4d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` A ) ) + ( ( 1 - T ) x. ( ( x e. ( A [,] B ) |-> -u ( log ` x ) ) ` B ) ) ) = -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 172 | 112 133 171 | 3brtr3d | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) |
| 173 | 166 168 | readdcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) e. RR ) |
| 174 | 14 127 | sseldd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. RR+ ) |
| 175 | 174 | relogcld | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) e. RR ) |
| 176 | 173 175 | ltnegd | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) <-> -u ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < -u ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) ) ) |
| 177 | 172 176 | mpbird | |- ( ( ( A e. RR+ /\ B e. RR+ /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( log ` A ) ) + ( ( 1 - T ) x. ( log ` B ) ) ) < ( log ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) |