This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvrelog | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrelog | ⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) | |
| 2 | 1 | oveq2i | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ◡ ( exp ↾ ℝ ) ) |
| 3 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 4 | f1of | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
| 6 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 7 | fss | ⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 11 | rescncf | ⊢ ( ℝ ⊆ ℂ → ( exp ∈ ( ℂ –cn→ ℂ ) → ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) ) | |
| 12 | 9 10 11 | mp2 | ⊢ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) |
| 13 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) → ( ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) ) | |
| 14 | 9 12 13 | mp2an | ⊢ ( ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ↔ ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 15 | 8 14 | mpbir | ⊢ ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) |
| 16 | 15 | a1i | ⊢ ( ⊤ → ( exp ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ) |
| 17 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 18 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 19 | ssid | ⊢ ℂ ⊆ ℂ | |
| 20 | dvef | ⊢ ( ℂ D exp ) = exp | |
| 21 | 20 | dmeqi | ⊢ dom ( ℂ D exp ) = dom exp |
| 22 | 18 | fdmi | ⊢ dom exp = ℂ |
| 23 | 21 22 | eqtri | ⊢ dom ( ℂ D exp ) = ℂ |
| 24 | 9 23 | sseqtrri | ⊢ ℝ ⊆ dom ( ℂ D exp ) |
| 25 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D exp ) ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) ) | |
| 26 | 17 18 19 24 25 | mp4an | ⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) |
| 27 | 20 | reseq1i | ⊢ ( ( ℂ D exp ) ↾ ℝ ) = ( exp ↾ ℝ ) |
| 28 | 26 27 | eqtri | ⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) |
| 29 | 28 | dmeqi | ⊢ dom ( ℝ D ( exp ↾ ℝ ) ) = dom ( exp ↾ ℝ ) |
| 30 | 5 | fdmi | ⊢ dom ( exp ↾ ℝ ) = ℝ |
| 31 | 29 30 | eqtri | ⊢ dom ( ℝ D ( exp ↾ ℝ ) ) = ℝ |
| 32 | 31 | a1i | ⊢ ( ⊤ → dom ( ℝ D ( exp ↾ ℝ ) ) = ℝ ) |
| 33 | 0nrp | ⊢ ¬ 0 ∈ ℝ+ | |
| 34 | 28 | rneqi | ⊢ ran ( ℝ D ( exp ↾ ℝ ) ) = ran ( exp ↾ ℝ ) |
| 35 | f1ofo | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ ) | |
| 36 | forn | ⊢ ( ( exp ↾ ℝ ) : ℝ –onto→ ℝ+ → ran ( exp ↾ ℝ ) = ℝ+ ) | |
| 37 | 3 35 36 | mp2b | ⊢ ran ( exp ↾ ℝ ) = ℝ+ |
| 38 | 34 37 | eqtri | ⊢ ran ( ℝ D ( exp ↾ ℝ ) ) = ℝ+ |
| 39 | 38 | eleq2i | ⊢ ( 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) ↔ 0 ∈ ℝ+ ) |
| 40 | 33 39 | mtbir | ⊢ ¬ 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) |
| 41 | 40 | a1i | ⊢ ( ⊤ → ¬ 0 ∈ ran ( ℝ D ( exp ↾ ℝ ) ) ) |
| 42 | 3 | a1i | ⊢ ( ⊤ → ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) |
| 43 | 16 32 41 42 | dvcnvre | ⊢ ( ⊤ → ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) ) |
| 44 | 43 | mptru | ⊢ ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) |
| 45 | 28 | fveq1i | ⊢ ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) |
| 46 | f1ocnvfv2 | ⊢ ( ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) | |
| 47 | 3 46 | mpan | ⊢ ( 𝑥 ∈ ℝ+ → ( ( exp ↾ ℝ ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) |
| 48 | 45 47 | eqtrid | ⊢ ( 𝑥 ∈ ℝ+ → ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) = 𝑥 ) |
| 49 | 48 | oveq2d | ⊢ ( 𝑥 ∈ ℝ+ → ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) = ( 1 / 𝑥 ) ) |
| 50 | 49 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( ( ℝ D ( exp ↾ ℝ ) ) ‘ ( ◡ ( exp ↾ ℝ ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 51 | 44 50 | eqtri | ⊢ ( ℝ D ◡ ( exp ↾ ℝ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 52 | 2 51 | eqtri | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |