This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mulnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | mulneg2d | ⊢ ( 𝜑 → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mulnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |