This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real logarithm function is continuous. (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogcn | ⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogf1o | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ | |
| 2 | f1of | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) | |
| 3 | 1 2 | ax-mp | ⊢ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | fss | ⊢ ( ( ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ |
| 7 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 8 | ovex | ⊢ ( 1 / 𝑥 ) ∈ V | |
| 9 | dvrelog | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) | |
| 10 | 8 9 | dmmpti | ⊢ dom ( ℝ D ( log ↾ ℝ+ ) ) = ℝ+ |
| 11 | dvcn | ⊢ ( ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ∧ ℝ+ ⊆ ℝ ) ∧ dom ( ℝ D ( log ↾ ℝ+ ) ) = ℝ+ ) → ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) | |
| 12 | 10 11 | mpan2 | ⊢ ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℂ ∧ ℝ+ ⊆ ℝ ) → ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) |
| 13 | 4 6 7 12 | mp3an | ⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) |
| 14 | cncfcdm | ⊢ ( ( ℝ ⊆ ℂ ∧ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℂ ) ) → ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ↔ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) ) | |
| 15 | 4 13 14 | mp2an | ⊢ ( ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) ↔ ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 16 | 3 15 | mpbir | ⊢ ( log ↾ ℝ+ ) ∈ ( ℝ+ –cn→ ℝ ) |