This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negfcncf.1 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝑥 ) ) | |
| Assertion | negfcncf | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐺 ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negfcncf.1 | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝑥 ) ) | |
| 2 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | 2 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 4 | 2 | feqmptd | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 5 | eqidd | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) = ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ) | |
| 6 | negeq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → - 𝑦 = - ( 𝐹 ‘ 𝑥 ) ) | |
| 7 | 3 4 5 6 | fmptco | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) = 𝐺 ) |
| 9 | id | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 10 | ssid | ⊢ ℂ ⊆ ℂ | |
| 11 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ - 𝑦 ) = ( 𝑦 ∈ ℂ ↦ - 𝑦 ) | |
| 12 | 11 | negcncf | ⊢ ( ℂ ⊆ ℂ → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 13 | 10 12 | mp1i | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 14 | 9 13 | cncfco | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ - 𝑦 ) ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 15 | 8 14 | eqeltrrd | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐺 ∈ ( 𝐴 –cn→ ℂ ) ) |