This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
| 3 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = 0 ↔ 𝐵 = 0 ) ) |
| 5 | 4 | ifbid | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = 0 , 1 , 0 ) = if ( 𝐵 = 0 , 1 , 0 ) ) |
| 6 | 1 | fveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) |
| 7 | 3 6 | oveq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 · ( log ‘ 𝑥 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 9 | 2 5 8 | ifbieq12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 10 | df-cxp | ⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) | |
| 11 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 12 | 0cn | ⊢ 0 ∈ ℂ | |
| 13 | 11 12 | ifcli | ⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ |
| 14 | 13 | elexi | ⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ V |
| 15 | fvex | ⊢ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ V | |
| 16 | 14 15 | ifex | ⊢ if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ∈ V |
| 17 | 9 10 16 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |