This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lincmb01cmp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐴 ) + ( 𝑇 · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) | |
| 2 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 0 ∈ ℝ ) | |
| 3 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℝ ) | |
| 4 | elicc01 | ⊢ ( 𝑇 ∈ ( 0 [,] 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 ≤ 𝑇 ∧ 𝑇 ≤ 1 ) ) | |
| 5 | 4 | simp1bi | ⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℝ ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝑇 ∈ ℝ ) |
| 7 | difrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) | |
| 8 | 7 | biimp3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 10 | eqid | ⊢ ( 0 · ( 𝐵 − 𝐴 ) ) = ( 0 · ( 𝐵 − 𝐴 ) ) | |
| 11 | eqid | ⊢ ( 1 · ( 𝐵 − 𝐴 ) ) = ( 1 · ( 𝐵 − 𝐴 ) ) | |
| 12 | 10 11 | iccdil | ⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) → ( 𝑇 ∈ ( 0 [,] 1 ) ↔ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 13 | 2 3 6 9 12 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 ∈ ( 0 [,] 1 ) ↔ ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 14 | 1 13 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) |
| 15 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝐵 ∈ ℝ ) | |
| 16 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝐴 ∈ ℝ ) | |
| 17 | 15 16 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 19 | 18 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝐵 − 𝐴 ) ) = 0 ) |
| 20 | 18 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 21 | 19 20 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) = ( 0 [,] ( 𝐵 − 𝐴 ) ) ) |
| 22 | 14 21 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] ( 𝐵 − 𝐴 ) ) ) |
| 23 | 6 17 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 24 | eqid | ⊢ ( 0 + 𝐴 ) = ( 0 + 𝐴 ) | |
| 25 | eqid | ⊢ ( ( 𝐵 − 𝐴 ) + 𝐴 ) = ( ( 𝐵 − 𝐴 ) + 𝐴 ) | |
| 26 | 24 25 | iccshftr | ⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝐵 − 𝐴 ) ∈ ℝ ) ∧ ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) → ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] ( 𝐵 − 𝐴 ) ) ↔ ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ∈ ( ( 0 + 𝐴 ) [,] ( ( 𝐵 − 𝐴 ) + 𝐴 ) ) ) ) |
| 27 | 2 17 23 16 26 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] ( 𝐵 − 𝐴 ) ) ↔ ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ∈ ( ( 0 + 𝐴 ) [,] ( ( 𝐵 − 𝐴 ) + 𝐴 ) ) ) ) |
| 28 | 22 27 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ∈ ( ( 0 + 𝐴 ) [,] ( ( 𝐵 − 𝐴 ) + 𝐴 ) ) ) |
| 29 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝑇 ∈ ℂ ) |
| 30 | 15 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝐵 ∈ ℂ ) |
| 31 | 29 30 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐵 ) ∈ ℂ ) |
| 32 | 16 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 𝐴 ∈ ℂ ) |
| 33 | 29 32 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐴 ) ∈ ℂ ) |
| 34 | 31 33 32 | subadd23d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 𝑇 · 𝐵 ) − ( 𝑇 · 𝐴 ) ) + 𝐴 ) = ( ( 𝑇 · 𝐵 ) + ( 𝐴 − ( 𝑇 · 𝐴 ) ) ) ) |
| 35 | 29 30 32 | subdid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · ( 𝐵 − 𝐴 ) ) = ( ( 𝑇 · 𝐵 ) − ( 𝑇 · 𝐴 ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = ( ( ( 𝑇 · 𝐵 ) − ( 𝑇 · 𝐴 ) ) + 𝐴 ) ) |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( 1 − 𝑇 ) ∈ ℝ ) | |
| 39 | 37 6 38 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 40 | 39 16 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐴 ) ∈ ℝ ) |
| 41 | 40 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐴 ) ∈ ℂ ) |
| 42 | 41 31 | addcomd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐴 ) + ( 𝑇 · 𝐵 ) ) = ( ( 𝑇 · 𝐵 ) + ( ( 1 − 𝑇 ) · 𝐴 ) ) ) |
| 43 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℂ ) | |
| 44 | 43 29 32 | subdird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐴 ) = ( ( 1 · 𝐴 ) − ( 𝑇 · 𝐴 ) ) ) |
| 45 | 32 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 46 | 45 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 · 𝐴 ) − ( 𝑇 · 𝐴 ) ) = ( 𝐴 − ( 𝑇 · 𝐴 ) ) ) |
| 47 | 44 46 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐴 ) = ( 𝐴 − ( 𝑇 · 𝐴 ) ) ) |
| 48 | 47 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · 𝐵 ) + ( ( 1 − 𝑇 ) · 𝐴 ) ) = ( ( 𝑇 · 𝐵 ) + ( 𝐴 − ( 𝑇 · 𝐴 ) ) ) ) |
| 49 | 42 48 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐴 ) + ( 𝑇 · 𝐵 ) ) = ( ( 𝑇 · 𝐵 ) + ( 𝐴 − ( 𝑇 · 𝐴 ) ) ) ) |
| 50 | 34 36 49 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = ( ( ( 1 − 𝑇 ) · 𝐴 ) + ( 𝑇 · 𝐵 ) ) ) |
| 51 | 32 | addlidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 52 | 30 32 | npcand | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 53 | 51 52 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 0 + 𝐴 ) [,] ( ( 𝐵 − 𝐴 ) + 𝐴 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 54 | 28 50 53 | 3eltr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐴 ) + ( 𝑇 · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |