This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogf1o | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1o2 | ⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) | |
| 2 | dff1o3 | ⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ↔ ( ( exp ↾ ran log ) : ran log –onto→ ( ℂ ∖ { 0 } ) ∧ Fun ◡ ( exp ↾ ran log ) ) ) | |
| 3 | 2 | simprbi | ⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) → Fun ◡ ( exp ↾ ran log ) ) |
| 4 | 1 3 | ax-mp | ⊢ Fun ◡ ( exp ↾ ran log ) |
| 5 | reeff1o | ⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ | |
| 6 | relogrn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ran log ) | |
| 7 | 6 | ssriv | ⊢ ℝ ⊆ ran log |
| 8 | resabs1 | ⊢ ( ℝ ⊆ ran log → ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) ) | |
| 9 | f1oeq1 | ⊢ ( ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) → ( ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) ) | |
| 10 | 7 8 9 | mp2b | ⊢ ( ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) |
| 11 | 5 10 | mpbir | ⊢ ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
| 12 | f1orescnv | ⊢ ( ( Fun ◡ ( exp ↾ ran log ) ∧ ( ( exp ↾ ran log ) ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) → ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) | |
| 13 | 4 11 12 | mp2an | ⊢ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 14 | dflog2 | ⊢ log = ◡ ( exp ↾ ran log ) | |
| 15 | reseq1 | ⊢ ( log = ◡ ( exp ↾ ran log ) → ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) ) | |
| 16 | f1oeq1 | ⊢ ( ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) → ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ↔ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) ) | |
| 17 | 14 15 16 | mp2b | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ↔ ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ) |
| 18 | 13 17 | mpbir | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |