This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfss | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff | ⊢ ( 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 3 | simpll | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐵 ⊆ 𝐶 ) | |
| 4 | 2 3 | fssd | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝑓 : 𝐴 ⟶ 𝐶 ) |
| 5 | cncfcdm | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝑓 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) | |
| 6 | 5 | adantll | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝑓 ∈ ( 𝐴 –cn→ 𝐶 ) ↔ 𝑓 : 𝐴 ⟶ 𝐶 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) ∧ 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝑓 ∈ ( 𝐴 –cn→ 𝐶 ) ) |
| 8 | 7 | ex | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) → ( 𝑓 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝑓 ∈ ( 𝐴 –cn→ 𝐶 ) ) ) |
| 9 | 8 | ssrdv | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ ) → ( 𝐴 –cn→ 𝐵 ) ⊆ ( 𝐴 –cn→ 𝐶 ) ) |