This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| Assertion | i1fadd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 5 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 7 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 12 | 4 6 8 10 10 11 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ℝ ) |
| 13 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 15 | i1frn | ⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) | |
| 16 | 2 15 | syl | ⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 17 | xpfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 19 | eqid | ⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) = ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) | |
| 20 | ovex | ⊢ ( 𝑢 + 𝑣 ) ∈ V | |
| 21 | 19 20 | fnmpoi | ⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) |
| 22 | dffn4 | ⊢ ( ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ↔ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) | |
| 23 | 21 22 | mpbi | ⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) |
| 24 | fofi | ⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ∈ Fin ) | |
| 25 | 18 23 24 | sylancl | ⊢ ( 𝜑 → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ∈ Fin ) |
| 26 | eqid | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑦 ) | |
| 27 | rspceov | ⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) | |
| 28 | 26 27 | mp3an3 | ⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
| 29 | ovex | ⊢ ( 𝑥 + 𝑦 ) ∈ V | |
| 30 | eqeq1 | ⊢ ( 𝑤 = ( 𝑥 + 𝑦 ) → ( 𝑤 = ( 𝑢 + 𝑣 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) ) | |
| 31 | 30 | 2rexbidv | ⊢ ( 𝑤 = ( 𝑥 + 𝑦 ) → ( ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) ) |
| 32 | 29 31 | elab | ⊢ ( ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
| 33 | 28 32 | sylibr | ⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
| 34 | 33 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
| 35 | 6 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 36 | dffn3 | ⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) | |
| 37 | 35 36 | sylib | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 38 | 8 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 39 | dffn3 | ⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) | |
| 40 | 38 39 | sylib | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
| 41 | 34 37 40 10 10 11 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
| 42 | 41 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
| 43 | 19 | rnmpo | ⊢ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) = { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } |
| 44 | 42 43 | sseqtrrdi | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) |
| 45 | 25 44 | ssfid | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
| 46 | 12 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ℝ ) |
| 47 | 46 | ssdifssd | ⊢ ( 𝜑 → ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ℝ ) |
| 48 | 47 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ℝ ) |
| 49 | 48 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 50 | 1 2 | i1faddlem | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 51 | 49 50 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 52 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
| 53 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 ∈ dom ∫1 ) |
| 54 | i1fmbf | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) | |
| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 ∈ MblFn ) |
| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 57 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ℝ ) |
| 58 | 57 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ℝ ) |
| 59 | eldifi | ⊢ ( 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) → 𝑦 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) | |
| 60 | 59 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) |
| 61 | 58 60 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℝ ) |
| 62 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 63 | 62 | frnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ran 𝐺 ⊆ ℝ ) |
| 64 | 63 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 65 | 61 64 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 − 𝑧 ) ∈ ℝ ) |
| 66 | mbfimasn | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑦 − 𝑧 ) ∈ ℝ ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) | |
| 67 | 55 56 65 66 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) |
| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 ∈ dom ∫1 ) |
| 69 | i1fmbf | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 ∈ MblFn ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 ∈ MblFn ) |
| 71 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 : ℝ ⟶ ℝ ) |
| 72 | mbfimasn | ⊢ ( ( 𝐺 ∈ MblFn ∧ 𝐺 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) | |
| 73 | 70 71 64 72 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 74 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) | |
| 75 | 67 73 74 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 76 | 75 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 77 | finiunmbl | ⊢ ( ( ran 𝐺 ∈ Fin ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) → ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) | |
| 78 | 52 76 77 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 79 | 51 78 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol ) |
| 80 | mblvol | ⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ) |
| 82 | mblss | ⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) | |
| 83 | 79 82 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) |
| 84 | inss1 | ⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) | |
| 85 | 67 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) |
| 86 | mblss | ⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ) |
| 88 | mblvol | ⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ) | |
| 89 | 85 88 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ) |
| 90 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → 𝑧 = 0 ) | |
| 91 | 90 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 𝑧 ) = ( 𝑦 − 0 ) ) |
| 92 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → 𝑦 ∈ ℂ ) |
| 93 | 92 | subid1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 0 ) = 𝑦 ) |
| 94 | 91 93 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 𝑧 ) = 𝑦 ) |
| 95 | 94 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → { ( 𝑦 − 𝑧 ) } = { 𝑦 } ) |
| 96 | 95 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) = ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 97 | 96 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 98 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) | |
| 99 | 1 98 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
| 101 | 97 100 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) |
| 102 | 89 101 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) |
| 103 | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∧ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) | |
| 104 | 84 87 102 103 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 105 | 104 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 = 0 → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 106 | eldifsn | ⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0 ) ) | |
| 107 | inss2 | ⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) | |
| 108 | eldifi | ⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑧 ∈ ran 𝐺 ) | |
| 109 | mblss | ⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) | |
| 110 | 73 109 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
| 111 | 108 110 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
| 112 | i1fima | ⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) | |
| 113 | 2 112 | syl | ⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 114 | 113 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 115 | mblvol | ⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) | |
| 116 | 114 115 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 117 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝐺 ∈ dom ∫1 ) |
| 118 | i1fima2sn | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) | |
| 119 | 117 118 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
| 120 | 116 119 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
| 121 | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ∧ ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) | |
| 122 | 107 111 120 121 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 123 | 106 122 | sylan2br | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 124 | 123 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ≠ 0 → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 125 | 105 124 | pm2.61dne | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 126 | 52 125 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 127 | 51 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 128 | 107 110 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ) |
| 129 | 128 125 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 130 | 129 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ran 𝐺 ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
| 131 | ovolfiniun | ⊢ ( ( ran 𝐺 ∈ Fin ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) | |
| 132 | 52 130 131 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 133 | 127 132 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 134 | ovollecl | ⊢ ( ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ∧ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) | |
| 135 | 83 126 133 134 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 136 | 81 135 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 137 | 12 45 79 136 | i1fd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |