This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | ||
| Assertion | dom2lem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| 2 | dom2d.2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) ) | |
| 3 | 1 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 5 | 4 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 6 | 3 5 | sylib | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 7 | 1 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 8 | 4 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 9 | 8 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 10 | 7 9 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 11 | 10 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 12 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) | |
| 13 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) | |
| 14 | 13 | nfeq1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 |
| 15 | 12 14 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
| 16 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 17 | 16 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 18 | 17 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ) ) |
| 19 | 16 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 20 | anidm | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) | |
| 21 | 19 20 | bitrdi | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) ) |
| 22 | 21 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 25 | 2 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 ↔ 𝑥 = 𝑦 ) ) |
| 26 | 25 | biimparc | ⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → 𝐶 = 𝐷 ) |
| 27 | 24 26 | eqeq12d | ⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) |
| 28 | 27 | ex | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
| 29 | 22 28 | sylbird | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
| 30 | 29 | pm5.74d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
| 31 | 18 30 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) ) ) |
| 32 | 15 31 10 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
| 33 | 32 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = 𝐷 ) |
| 34 | 11 33 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
| 35 | 25 | biimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) |
| 36 | 34 35 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 37 | 36 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 38 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 39 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 40 | 38 39 | dff13f | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 41 | 6 37 40 | sylanbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1→ 𝐵 ) |