This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00id | ⊢ ( 0 + 0 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ax-rnegex | ⊢ ( 0 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 ) | |
| 3 | oveq2 | ⊢ ( 𝑐 = 0 → ( 0 + 𝑐 ) = ( 0 + 0 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 ↔ ( 0 + 0 ) = 0 ) ) |
| 5 | 4 | biimpd | ⊢ ( 𝑐 = 0 → ( ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) ) |
| 6 | 5 | adantld | ⊢ ( 𝑐 = 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
| 7 | ax-rrecex | ⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) | |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝑐 · 𝑦 ) = 1 ) |
| 9 | simplll | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑐 ∈ ℂ ) |
| 11 | simprl | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) |
| 13 | 0cn | ⊢ 0 ∈ ℂ | |
| 14 | mulass | ⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) | |
| 15 | 13 14 | mp3an3 | ⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 𝑐 · ( 𝑦 · 0 ) ) ) |
| 17 | oveq1 | ⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = ( 1 · 0 ) ) | |
| 18 | 13 | mullidi | ⊢ ( 1 · 0 ) = 0 |
| 19 | 17 18 | eqtrdi | ⊢ ( ( 𝑐 · 𝑦 ) = 1 → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
| 20 | 19 | ad2antll | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · 𝑦 ) · 0 ) = 0 ) |
| 21 | 16 20 | eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) = 0 ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = ( 0 + 0 ) ) |
| 23 | simpllr | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 𝑐 ) = 0 ) | |
| 24 | 23 | oveq1d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( 0 · ( 𝑦 · 0 ) ) ) |
| 25 | remulcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑦 · 0 ) ∈ ℝ ) | |
| 26 | 1 25 | mpan2 | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 · 0 ) ∈ ℝ ) |
| 27 | 26 | ad2antrl | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑦 · 0 ) ∈ ℂ ) |
| 29 | adddir | ⊢ ( ( 0 ∈ ℂ ∧ 𝑐 ∈ ℂ ∧ ( 𝑦 · 0 ) ∈ ℂ ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) | |
| 30 | 13 10 28 29 | mp3an2i | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 + 𝑐 ) · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
| 31 | 24 30 | eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) = ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) ) |
| 33 | remulcl | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) | |
| 34 | 1 26 33 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 35 | 34 | ad2antrl | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 36 | 35 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
| 37 | remulcl | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 𝑦 · 0 ) ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) | |
| 38 | 9 27 37 | syl2anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) |
| 40 | addass | ⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) | |
| 41 | 13 40 | mp3an3 | ⊢ ( ( ( 0 · ( 𝑦 · 0 ) ) ∈ ℂ ∧ ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℂ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
| 42 | 36 39 41 | syl2anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( 𝑐 · ( 𝑦 · 0 ) ) ) + 0 ) = ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) ) |
| 43 | 32 42 | eqtr2d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ) |
| 44 | 26 37 | sylan2 | ⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ) |
| 45 | readdcl | ⊢ ( ( ( 𝑐 · ( 𝑦 · 0 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) | |
| 46 | 44 1 45 | sylancl | ⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
| 47 | 9 11 46 | syl2anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ) |
| 48 | readdcan | ⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) | |
| 49 | 1 48 | mp3an2 | ⊢ ( ( ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ∈ ℝ ∧ ( 0 · ( 𝑦 · 0 ) ) ∈ ℝ ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
| 50 | 47 35 49 | syl2anc | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( ( 0 · ( 𝑦 · 0 ) ) + ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) ) = ( ( 0 · ( 𝑦 · 0 ) ) + 0 ) ↔ ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) ) |
| 51 | 43 50 | mpbid | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( ( 𝑐 · ( 𝑦 · 0 ) ) + 0 ) = 0 ) |
| 52 | 22 51 | eqtr3d | ⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) ∧ ( 𝑦 ∈ ℝ ∧ ( 𝑐 · 𝑦 ) = 1 ) ) → ( 0 + 0 ) = 0 ) |
| 53 | 8 52 | rexlimddv | ⊢ ( ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) ∧ 𝑐 ≠ 0 ) → ( 0 + 0 ) = 0 ) |
| 54 | 53 | expcom | ⊢ ( 𝑐 ≠ 0 → ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) ) |
| 55 | 6 54 | pm2.61ine | ⊢ ( ( 𝑐 ∈ ℝ ∧ ( 0 + 𝑐 ) = 0 ) → ( 0 + 0 ) = 0 ) |
| 56 | 55 | rexlimiva | ⊢ ( ∃ 𝑐 ∈ ℝ ( 0 + 𝑐 ) = 0 → ( 0 + 0 ) = 0 ) |
| 57 | 1 2 56 | mp2b | ⊢ ( 0 + 0 ) = 0 |