This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resfnfinfin | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ 𝐵 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel | ⊢ ( 𝐹 Fn 𝐴 → Rel 𝐹 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → Rel 𝐹 ) |
| 3 | resindm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) | |
| 4 | 3 | eqcomd | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 6 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 7 | 6 | funfnd | ⊢ ( 𝐹 Fn 𝐴 → 𝐹 Fn dom 𝐹 ) |
| 8 | fnresin2 | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ) | |
| 9 | infi | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∩ dom 𝐹 ) ∈ Fin ) | |
| 10 | fnfi | ⊢ ( ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐵 ∩ dom 𝐹 ) ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) |
| 12 | 11 | ex | ⊢ ( ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) Fn ( 𝐵 ∩ dom 𝐹 ) → ( 𝐵 ∈ Fin → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) ) |
| 13 | 7 8 12 | 3syl | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ Fin → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ∈ Fin ) |
| 15 | 5 14 | eqeltrd | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ) → ( 𝐹 ↾ 𝐵 ) ∈ Fin ) |