This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | ||
| Assertion | itg1addlem3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 𝐼 𝐵 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | |
| 4 | eqeq1 | ⊢ ( 𝑖 = 𝐴 → ( 𝑖 = 0 ↔ 𝐴 = 0 ) ) | |
| 5 | eqeq1 | ⊢ ( 𝑗 = 𝐵 → ( 𝑗 = 0 ↔ 𝐵 = 0 ) ) | |
| 6 | 4 5 | bi2anan9 | ⊢ ( ( 𝑖 = 𝐴 ∧ 𝑗 = 𝐵 ) → ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 7 | sneq | ⊢ ( 𝑖 = 𝐴 → { 𝑖 } = { 𝐴 } ) | |
| 8 | 7 | imaeq2d | ⊢ ( 𝑖 = 𝐴 → ( ◡ 𝐹 “ { 𝑖 } ) = ( ◡ 𝐹 “ { 𝐴 } ) ) |
| 9 | sneq | ⊢ ( 𝑗 = 𝐵 → { 𝑗 } = { 𝐵 } ) | |
| 10 | 9 | imaeq2d | ⊢ ( 𝑗 = 𝐵 → ( ◡ 𝐺 “ { 𝑗 } ) = ( ◡ 𝐺 “ { 𝐵 } ) ) |
| 11 | 8 10 | ineqan12d | ⊢ ( ( 𝑖 = 𝐴 ∧ 𝑗 = 𝐵 ) → ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) = ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑖 = 𝐴 ∧ 𝑗 = 𝐵 ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) |
| 13 | 6 12 | ifbieq2d | ⊢ ( ( 𝑖 = 𝐴 ∧ 𝑗 = 𝐵 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = if ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) ) |
| 14 | c0ex | ⊢ 0 ∈ V | |
| 15 | fvex | ⊢ ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ∈ V | |
| 16 | 14 15 | ifex | ⊢ if ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) ∈ V |
| 17 | 13 3 16 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 𝐼 𝐵 ) = if ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) ) |
| 18 | iffalse | ⊢ ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) → if ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) | |
| 19 | 17 18 | sylan9eq | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 𝐼 𝐵 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝐴 } ) ∩ ( ◡ 𝐺 “ { 𝐵 } ) ) ) ) |