This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg1addlem.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| itg1addlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| itg1addlem.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) | ||
| itg1addlem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ dom vol ) | ||
| itg1addlem.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ℝ ) | ||
| Assertion | itg1addlem1 | ⊢ ( 𝜑 → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1addlem.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 2 | itg1addlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | itg1addlem.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) | |
| 4 | itg1addlem.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ dom vol ) | |
| 5 | itg1addlem.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ℝ ) | |
| 6 | 4 5 | jca | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
| 8 | 3 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝐵 ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 11 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝐹 Fn 𝑋 ) |
| 13 | fniniseg | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 15 | 10 14 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 16 | 15 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 17 | 16 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 18 | invdisj | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
| 20 | volfiniun | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) | |
| 21 | 2 7 19 20 | syl3anc | ⊢ ( 𝜑 → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |