This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . The function I represents the pieces into which we will break up the domain of the sum. Since it is infinite only when both i and j are zero, we arbitrarily define it to be zero there to simplify the sums that are manipulated in itg1addlem4 and itg1addlem5 . (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | ||
| Assertion | itg1addlem2 | ⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | |
| 4 | iffalse | ⊢ ( ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) |
| 6 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol ) |
| 8 | i1fima | ⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol ) |
| 10 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ dom vol ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ dom vol ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ dom vol ) |
| 13 | mblvol | ⊢ ( ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ dom vol → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) |
| 15 | 5 14 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) |
| 16 | neorian | ⊢ ( ( 𝑖 ≠ 0 ∨ 𝑗 ≠ 0 ) ↔ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) | |
| 17 | inss1 | ⊢ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑖 } ) | |
| 18 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol ) |
| 19 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑖 } ) ⊆ ℝ ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( ◡ 𝐹 “ { 𝑖 } ) ⊆ ℝ ) |
| 21 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑖 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ) | |
| 22 | 18 21 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ) |
| 23 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → 𝐹 ∈ dom ∫1 ) |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → 𝑖 ∈ ℝ ) | |
| 25 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → 𝑖 ≠ 0 ) | |
| 26 | eldifsn | ⊢ ( 𝑖 ∈ ( ℝ ∖ { 0 } ) ↔ ( 𝑖 ∈ ℝ ∧ 𝑖 ≠ 0 ) ) | |
| 27 | 24 25 26 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → 𝑖 ∈ ( ℝ ∖ { 0 } ) ) |
| 28 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑖 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ∈ ℝ ) | |
| 29 | 23 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ∈ ℝ ) |
| 30 | 22 29 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ∈ ℝ ) |
| 31 | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑖 } ) ∧ ( ◡ 𝐹 “ { 𝑖 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑖 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) | |
| 32 | 17 20 30 31 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑖 ≠ 0 ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) |
| 33 | inss2 | ⊢ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑗 } ) | |
| 34 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → 𝐺 ∈ dom ∫1 ) |
| 35 | 34 8 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol ) |
| 37 | mblss | ⊢ ( ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol → ( ◡ 𝐺 “ { 𝑗 } ) ⊆ ℝ ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( ◡ 𝐺 “ { 𝑗 } ) ⊆ ℝ ) |
| 39 | mblvol | ⊢ ( ( ◡ 𝐺 “ { 𝑗 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ) | |
| 40 | 36 39 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ) |
| 41 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → 𝐺 ∈ dom ∫1 ) |
| 42 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → 𝑗 ∈ ℝ ) | |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → 𝑗 ≠ 0 ) | |
| 44 | eldifsn | ⊢ ( 𝑗 ∈ ( ℝ ∖ { 0 } ) ↔ ( 𝑗 ∈ ℝ ∧ 𝑗 ≠ 0 ) ) | |
| 45 | 42 43 44 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → 𝑗 ∈ ( ℝ ∖ { 0 } ) ) |
| 46 | i1fima2sn | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑗 ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ ℝ ) | |
| 47 | 41 45 46 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ ℝ ) |
| 48 | 40 47 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( vol* ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ ℝ ) |
| 49 | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑗 } ) ∧ ( ◡ 𝐺 “ { 𝑗 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐺 “ { 𝑗 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) | |
| 50 | 33 38 48 49 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ 𝑗 ≠ 0 ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) |
| 51 | 32 50 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ( 𝑖 ≠ 0 ∨ 𝑗 ≠ 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) |
| 52 | 16 51 | sylan2br | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ∈ ℝ ) |
| 53 | 15 52 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) ∧ ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ) |
| 54 | 53 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( ¬ ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ) ) |
| 55 | iftrue | ⊢ ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) = 0 ) | |
| 56 | 0re | ⊢ 0 ∈ ℝ | |
| 57 | 55 56 | eqeltrdi | ⊢ ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ) |
| 58 | 54 57 | pm2.61d2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ) |
| 59 | 58 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ℝ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ) |
| 60 | 3 | fmpo | ⊢ ( ∀ 𝑖 ∈ ℝ ∀ 𝑗 ∈ ℝ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ∈ ℝ ↔ 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 61 | 59 60 | sylib | ⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |