This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| Assertion | i1faddlem | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 5 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 6 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 8 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 12 | 5 8 10 10 11 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) Fn ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ∘f + 𝐺 ) Fn ℝ ) |
| 14 | fniniseg | ⊢ ( ( 𝐹 ∘f + 𝐺 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 16 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐺 Fn ℝ ) |
| 17 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ℝ ) | |
| 18 | fnfvelrn | ⊢ ( ( 𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
| 20 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) | |
| 21 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 22 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 23 | 5 8 10 10 11 21 22 | ofval | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 24 | 23 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 25 | 20 24 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐴 = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( 𝐺 ‘ 𝑧 ) ) ) |
| 27 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 28 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) | |
| 29 | 4 27 28 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 31 | 30 17 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 32 | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ℝ ⟶ ℂ ) | |
| 33 | 7 27 32 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℂ ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 35 | 34 17 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 36 | 31 35 | pncand | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 37 | 26 36 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) |
| 38 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐹 Fn ℝ ) |
| 39 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 41 | 17 37 40 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 42 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 43 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 44 | 16 43 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 45 | 17 42 44 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 46 | 41 45 | elind | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐴 − 𝑦 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) | |
| 48 | 47 | sneqd | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { ( 𝐴 − 𝑦 ) } = { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) |
| 49 | 48 | imaeq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) = ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 50 | sneq | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐺 ‘ 𝑧 ) } ) | |
| 51 | 50 | imaeq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 52 | 49 51 | ineq12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 53 | 52 | eleq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) ) |
| 54 | 53 | rspcev | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ∧ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 55 | 19 46 54 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 57 | elin | ⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ) | |
| 58 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → 𝐹 Fn ℝ ) |
| 59 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ) ) |
| 61 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → 𝐺 Fn ℝ ) |
| 62 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 64 | 60 63 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 65 | anandi | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 66 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝑧 ∈ ℝ ) | |
| 67 | 23 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 68 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) | |
| 69 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐺 ‘ 𝑧 ) = 𝑦 ) | |
| 70 | 68 69 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐴 − 𝑦 ) + 𝑦 ) ) |
| 71 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝐴 ∈ ℂ ) | |
| 72 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 73 | 72 66 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 74 | 69 73 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
| 75 | 71 74 | npcand | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐴 − 𝑦 ) + 𝑦 ) = 𝐴 ) |
| 76 | 67 70 75 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) |
| 77 | 66 76 | jca | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) |
| 78 | 77 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 79 | 65 78 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 80 | 64 79 | sylbid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 81 | 57 80 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 82 | 81 | rexlimdvw | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 83 | 56 82 | impbid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 84 | 15 83 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 85 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) | |
| 86 | 84 85 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 87 | 86 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |