This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | ||
| itg1add.4 | ⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | ||
| Assertion | itg1addlem5 | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | itg1add.3 | ⊢ 𝐼 = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | |
| 4 | itg1add.4 | ⊢ 𝑃 = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | |
| 5 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 7 | i1frn | ⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ran 𝐺 ∈ Fin ) |
| 10 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 12 | 11 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℝ ) |
| 15 | 14 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℂ ) |
| 16 | 1 2 3 | itg1addlem2 | ⊢ ( 𝜑 → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 18 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 20 | 19 | frnd | ⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ ) |
| 21 | 20 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 23 | 17 14 22 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 24 | 23 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 25 | 15 24 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 26 | 9 25 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 27 | 22 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℂ ) |
| 28 | 27 24 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 29 | 9 28 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 30 | 6 26 29 | fsumadd | ⊢ ( 𝜑 → Σ 𝑦 ∈ ran 𝐹 ( Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) = ( Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 31 | 1 2 3 4 | itg1addlem4 | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) ) |
| 32 | 15 27 24 | adddird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 33 | 32 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 34 | 9 25 28 | fsumadd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) = ( Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 35 | 33 34 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = ( Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 36 | 35 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( ( 𝑦 + 𝑧 ) · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 ( Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 37 | 31 36 | eqtrd | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = Σ 𝑦 ∈ ran 𝐹 ( Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 38 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑦 · ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) | |
| 39 | 1 38 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑦 · ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
| 40 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 41 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
| 42 | inss2 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) | |
| 43 | 42 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 44 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) | |
| 45 | 1 44 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 47 | i1fima | ⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) | |
| 48 | 2 47 | syl | ⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 50 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) | |
| 51 | 46 49 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 52 | 12 | ssdifssd | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 53 | 52 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑦 ∈ ℝ ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℝ ) |
| 55 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran 𝐺 ⊆ ℝ ) |
| 56 | 55 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 57 | eldifsni | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 58 | 57 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ≠ 0 ) |
| 59 | simpl | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → 𝑦 = 0 ) | |
| 60 | 59 | necon3ai | ⊢ ( 𝑦 ≠ 0 → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
| 61 | 58 60 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
| 62 | 1 2 3 | itg1addlem3 | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 63 | 54 56 61 62 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 64 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 65 | 64 54 56 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 66 | 63 65 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 67 | 40 41 43 51 66 | itg1addlem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 68 | iunin2 | ⊢ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) ) | |
| 69 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐹 ∈ dom ∫1 ) |
| 70 | 69 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 71 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
| 73 | iunid | ⊢ ∪ 𝑧 ∈ ran 𝐺 { 𝑧 } = ran 𝐺 | |
| 74 | 73 | imaeq2i | ⊢ ( ◡ 𝐺 “ ∪ 𝑧 ∈ ran 𝐺 { 𝑧 } ) = ( ◡ 𝐺 “ ran 𝐺 ) |
| 75 | imaiun | ⊢ ( ◡ 𝐺 “ ∪ 𝑧 ∈ ran 𝐺 { 𝑧 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) | |
| 76 | cnvimarndm | ⊢ ( ◡ 𝐺 “ ran 𝐺 ) = dom 𝐺 | |
| 77 | 74 75 76 | 3eqtr3i | ⊢ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) = dom 𝐺 |
| 78 | 40 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → dom 𝐺 = ℝ ) |
| 79 | 77 78 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) = ℝ ) |
| 80 | 72 79 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 81 | dfss2 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) ↔ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ◡ 𝐹 “ { 𝑦 } ) ) | |
| 82 | 80 81 | sylib | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ∪ 𝑧 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 83 | 68 82 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 84 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 85 | 63 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 𝐼 𝑧 ) = Σ 𝑧 ∈ ran 𝐺 ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 86 | 67 84 85 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑦 𝐼 𝑧 ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑦 · ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( 𝑦 · Σ 𝑧 ∈ ran 𝐺 ( 𝑦 𝐼 𝑧 ) ) ) |
| 88 | 53 | recnd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 89 | 65 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 90 | 41 88 89 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑦 · Σ 𝑧 ∈ ran 𝐺 ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 91 | 87 90 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑦 · ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 92 | 91 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑦 · ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = Σ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 93 | difssd | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) | |
| 94 | 54 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℂ ) |
| 95 | 94 89 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 96 | 41 95 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 97 | dfin4 | ⊢ ( ran 𝐹 ∩ { 0 } ) = ( ran 𝐹 ∖ ( ran 𝐹 ∖ { 0 } ) ) | |
| 98 | inss2 | ⊢ ( ran 𝐹 ∩ { 0 } ) ⊆ { 0 } | |
| 99 | 97 98 | eqsstrri | ⊢ ( ran 𝐹 ∖ ( ran 𝐹 ∖ { 0 } ) ) ⊆ { 0 } |
| 100 | 99 | sseli | ⊢ ( 𝑦 ∈ ( ran 𝐹 ∖ ( ran 𝐹 ∖ { 0 } ) ) → 𝑦 ∈ { 0 } ) |
| 101 | elsni | ⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) | |
| 102 | 101 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 = 0 ) |
| 103 | 102 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = ( 0 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 104 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 105 | 0re | ⊢ 0 ∈ ℝ | |
| 106 | 102 105 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℝ ) |
| 107 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
| 108 | 104 106 107 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 109 | 108 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 110 | 109 | mul02d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 0 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 111 | 103 110 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 112 | 111 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 0 ) |
| 113 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) → ran 𝐺 ∈ Fin ) |
| 114 | 113 | olcd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) → ( ran 𝐺 ⊆ ( ℤ≥ ‘ 0 ) ∨ ran 𝐺 ∈ Fin ) ) |
| 115 | sumz | ⊢ ( ( ran 𝐺 ⊆ ( ℤ≥ ‘ 0 ) ∨ ran 𝐺 ∈ Fin ) → Σ 𝑧 ∈ ran 𝐺 0 = 0 ) | |
| 116 | 114 115 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) → Σ 𝑧 ∈ ran 𝐺 0 = 0 ) |
| 117 | 112 116 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 0 } ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 118 | 100 117 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran 𝐹 ∖ ( ran 𝐹 ∖ { 0 } ) ) ) → Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 119 | 93 96 118 6 | fsumss | ⊢ ( 𝜑 → Σ 𝑦 ∈ ( ran 𝐹 ∖ { 0 } ) Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 120 | 39 92 119 | 3eqtrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 121 | itg1val | ⊢ ( 𝐺 ∈ dom ∫1 → ( ∫1 ‘ 𝐺 ) = Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) | |
| 122 | 2 121 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) = Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 123 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 124 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ran 𝐹 ∈ Fin ) |
| 125 | inss1 | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) | |
| 126 | 125 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 127 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
| 128 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
| 129 | 127 128 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
| 130 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ran 𝐹 ⊆ ℝ ) |
| 131 | 130 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 132 | 20 | ssdifssd | ⊢ ( 𝜑 → ( ran 𝐺 ∖ { 0 } ) ⊆ ℝ ) |
| 133 | 132 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝑧 ∈ ℝ ) |
| 134 | 133 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
| 135 | eldifsni | ⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑧 ≠ 0 ) | |
| 136 | 135 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ≠ 0 ) |
| 137 | simpr | ⊢ ( ( 𝑦 = 0 ∧ 𝑧 = 0 ) → 𝑧 = 0 ) | |
| 138 | 137 | necon3ai | ⊢ ( 𝑧 ≠ 0 → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
| 139 | 136 138 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ¬ ( 𝑦 = 0 ∧ 𝑧 = 0 ) ) |
| 140 | 131 134 139 62 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 141 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 142 | 141 131 134 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 143 | 140 142 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
| 144 | 123 124 126 129 143 | itg1addlem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑦 ∈ ran 𝐹 ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 145 | incom | ⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) | |
| 146 | 145 | a1i | ⊢ ( 𝑦 ∈ ran 𝐹 → ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
| 147 | 146 | iuneq2i | ⊢ ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 148 | iunin2 | ⊢ ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ) | |
| 149 | 147 148 | eqtri | ⊢ ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 150 | cnvimass | ⊢ ( ◡ 𝐺 “ { 𝑧 } ) ⊆ dom 𝐺 | |
| 151 | 19 | fdmd | ⊢ ( 𝜑 → dom 𝐺 = ℝ ) |
| 152 | 151 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → dom 𝐺 = ℝ ) |
| 153 | 150 152 | sseqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
| 154 | iunid | ⊢ ∪ 𝑦 ∈ ran 𝐹 { 𝑦 } = ran 𝐹 | |
| 155 | 154 | imaeq2i | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ran 𝐹 { 𝑦 } ) = ( ◡ 𝐹 “ ran 𝐹 ) |
| 156 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ran 𝐹 { 𝑦 } ) = ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) | |
| 157 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 158 | 155 156 157 | 3eqtr3i | ⊢ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) = dom 𝐹 |
| 159 | 11 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ℝ ) |
| 160 | 159 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → dom 𝐹 = ℝ ) |
| 161 | 158 160 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) = ℝ ) |
| 162 | 153 161 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ) |
| 163 | dfss2 | ⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ) = ( ◡ 𝐺 “ { 𝑧 } ) ) | |
| 164 | 162 163 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( ◡ 𝐺 “ { 𝑧 } ) ∩ ∪ 𝑦 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑦 } ) ) = ( ◡ 𝐺 “ { 𝑧 } ) ) |
| 165 | 149 164 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) = ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
| 166 | 165 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol ‘ ∪ 𝑦 ∈ ran 𝐹 ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 167 | 140 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → Σ 𝑦 ∈ ran 𝐹 ( 𝑦 𝐼 𝑧 ) = Σ 𝑦 ∈ ran 𝐹 ( vol ‘ ( ( ◡ 𝐹 “ { 𝑦 } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
| 168 | 144 166 167 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = Σ 𝑦 ∈ ran 𝐹 ( 𝑦 𝐼 𝑧 ) ) |
| 169 | 168 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 · ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = ( 𝑧 · Σ 𝑦 ∈ ran 𝐹 ( 𝑦 𝐼 𝑧 ) ) ) |
| 170 | 133 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝑧 ∈ ℂ ) |
| 171 | 142 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 172 | 124 170 171 | fsummulc2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 · Σ 𝑦 ∈ ran 𝐹 ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 173 | 169 172 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 · ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 174 | 173 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ( 𝑧 · ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) = Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 175 | difssd | ⊢ ( 𝜑 → ( ran 𝐺 ∖ { 0 } ) ⊆ ran 𝐺 ) | |
| 176 | 170 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ ) |
| 177 | 176 171 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 178 | 124 177 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 179 | dfin4 | ⊢ ( ran 𝐺 ∩ { 0 } ) = ( ran 𝐺 ∖ ( ran 𝐺 ∖ { 0 } ) ) | |
| 180 | inss2 | ⊢ ( ran 𝐺 ∩ { 0 } ) ⊆ { 0 } | |
| 181 | 179 180 | eqsstrri | ⊢ ( ran 𝐺 ∖ ( ran 𝐺 ∖ { 0 } ) ) ⊆ { 0 } |
| 182 | 181 | sseli | ⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ ( ran 𝐺 ∖ { 0 } ) ) → 𝑧 ∈ { 0 } ) |
| 183 | elsni | ⊢ ( 𝑧 ∈ { 0 } → 𝑧 = 0 ) | |
| 184 | 183 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 = 0 ) |
| 185 | 184 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = ( 0 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 186 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 187 | 13 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 188 | 184 105 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
| 189 | 186 187 188 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 190 | 189 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 191 | 190 | mul02d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 0 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 192 | 185 191 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 193 | 192 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) → Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 0 ) |
| 194 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) → ran 𝐹 ∈ Fin ) |
| 195 | 194 | olcd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) → ( ran 𝐹 ⊆ ( ℤ≥ ‘ 0 ) ∨ ran 𝐹 ∈ Fin ) ) |
| 196 | sumz | ⊢ ( ( ran 𝐹 ⊆ ( ℤ≥ ‘ 0 ) ∨ ran 𝐹 ∈ Fin ) → Σ 𝑦 ∈ ran 𝐹 0 = 0 ) | |
| 197 | 195 196 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) → Σ 𝑦 ∈ ran 𝐹 0 = 0 ) |
| 198 | 193 197 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ { 0 } ) → Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 199 | 182 198 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran 𝐺 ∖ ( ran 𝐺 ∖ { 0 } ) ) ) → Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = 0 ) |
| 200 | 175 178 199 8 | fsumss | ⊢ ( 𝜑 → Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 201 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℝ ) |
| 202 | 201 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑧 ∈ ℂ ) |
| 203 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝐼 : ( ℝ × ℝ ) ⟶ ℝ ) |
| 204 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) → ran 𝐹 ⊆ ℝ ) |
| 205 | 204 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ℝ ) |
| 206 | 203 205 201 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℝ ) |
| 207 | 206 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 𝐼 𝑧 ) ∈ ℂ ) |
| 208 | 202 207 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran 𝐺 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 209 | 208 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ∈ ℂ ) |
| 210 | 8 6 209 | fsumcom | ⊢ ( 𝜑 → Σ 𝑧 ∈ ran 𝐺 Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 211 | 200 210 | eqtrd | ⊢ ( 𝜑 → Σ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) Σ 𝑦 ∈ ran 𝐹 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 212 | 122 174 211 | 3eqtrd | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐺 ) = Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) |
| 213 | 120 212 | oveq12d | ⊢ ( 𝜑 → ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ 𝐺 ) ) = ( Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑦 · ( 𝑦 𝐼 𝑧 ) ) + Σ 𝑦 ∈ ran 𝐹 Σ 𝑧 ∈ ran 𝐺 ( 𝑧 · ( 𝑦 𝐼 𝑧 ) ) ) ) |
| 214 | 30 37 213 | 3eqtr4d | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ 𝐺 ) ) ) |