This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3eltr4g.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 | ||
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 | ||
| Assertion | 3eltr4g | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | 3eltr4g.2 | ⊢ 𝐶 = 𝐴 | |
| 3 | 3eltr4g.3 | ⊢ 𝐷 = 𝐵 | |
| 4 | 2 1 | eqeltrid | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 5 | 4 3 | eleqtrrdi | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |