This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplified form of ismbfd . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismbf3d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| ismbf3d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | ||
| Assertion | ismbf3d | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf3d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | ismbf3d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | |
| 3 | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
| 5 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ) = ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) | |
| 6 | ioossre | ⊢ ( - 𝑦 (,) +∞ ) ⊆ ℝ | |
| 7 | 6 | rgenw | ⊢ ∀ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ⊆ ℝ |
| 8 | iunss | ⊢ ( ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ⊆ ℝ ↔ ∀ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ⊆ ℝ ) | |
| 9 | 7 8 | mpbir | ⊢ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ⊆ ℝ |
| 10 | renegcl | ⊢ ( 𝑧 ∈ ℝ → - 𝑧 ∈ ℝ ) | |
| 11 | arch | ⊢ ( - 𝑧 ∈ ℝ → ∃ 𝑦 ∈ ℕ - 𝑧 < 𝑦 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ ℕ - 𝑧 < 𝑦 ) |
| 13 | simpl | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → 𝑧 ∈ ℝ ) | |
| 14 | 13 | biantrurd | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 < 𝑧 ↔ ( 𝑧 ∈ ℝ ∧ - 𝑦 < 𝑧 ) ) ) |
| 15 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 16 | ltnegcon1 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( - 𝑧 < 𝑦 ↔ - 𝑦 < 𝑧 ) ) | |
| 17 | 15 16 | sylan2 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → ( - 𝑧 < 𝑦 ↔ - 𝑦 < 𝑧 ) ) |
| 18 | 15 | adantl | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
| 19 | 18 | renegcld | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → - 𝑦 ∈ ℝ ) |
| 20 | 19 | rexrd | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → - 𝑦 ∈ ℝ* ) |
| 21 | elioopnf | ⊢ ( - 𝑦 ∈ ℝ* → ( 𝑧 ∈ ( - 𝑦 (,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ - 𝑦 < 𝑧 ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → ( 𝑧 ∈ ( - 𝑦 (,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ - 𝑦 < 𝑧 ) ) ) |
| 23 | 14 17 22 | 3bitr4d | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ ) → ( - 𝑧 < 𝑦 ↔ 𝑧 ∈ ( - 𝑦 (,) +∞ ) ) ) |
| 24 | 23 | rexbidva | ⊢ ( 𝑧 ∈ ℝ → ( ∃ 𝑦 ∈ ℕ - 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ ℕ 𝑧 ∈ ( - 𝑦 (,) +∞ ) ) ) |
| 25 | 12 24 | mpbid | ⊢ ( 𝑧 ∈ ℝ → ∃ 𝑦 ∈ ℕ 𝑧 ∈ ( - 𝑦 (,) +∞ ) ) |
| 26 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ↔ ∃ 𝑦 ∈ ℕ 𝑧 ∈ ( - 𝑦 (,) +∞ ) ) | |
| 27 | 25 26 | sylibr | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ) |
| 28 | 27 | ssriv | ⊢ ℝ ⊆ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) |
| 29 | 9 28 | eqssi | ⊢ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) = ℝ |
| 30 | 29 | imaeq2i | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ℕ ( - 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ℝ ) |
| 31 | 5 30 | eqtr3i | ⊢ ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ℝ ) |
| 32 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 33 | 15 | renegcld | ⊢ ( 𝑦 ∈ ℕ → - 𝑦 ∈ ℝ ) |
| 34 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 (,) +∞ ) = ( - 𝑦 (,) +∞ ) ) | |
| 35 | 34 | imaeq2d | ⊢ ( 𝑥 = - 𝑦 → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ) |
| 36 | 35 | eleq1d | ⊢ ( 𝑥 = - 𝑦 → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) ) |
| 37 | 36 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ - 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 38 | 32 33 37 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 39 | 38 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 40 | iunmbl | ⊢ ( ∀ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol → ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) | |
| 41 | 39 40 | syl | ⊢ ( 𝜑 → ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( - 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 42 | 31 41 | eqeltrrid | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 43 | 4 42 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 44 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑦 ∈ ℕ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) | |
| 45 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ ℕ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) | |
| 46 | 3simpb | ⊢ ( ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) ) | |
| 47 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → 𝑧 ∈ ℝ ) | |
| 48 | nnrp | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) | |
| 49 | 48 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → 𝑦 ∈ ℝ+ ) |
| 50 | 49 | rpreccld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → ( 1 / 𝑦 ) ∈ ℝ+ ) |
| 51 | 47 50 | ltsubrpd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑧 − ( 1 / 𝑦 ) ) < 𝑧 ) |
| 52 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → 𝑥 ∈ ℝ ) | |
| 53 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) | |
| 54 | nnrecre | ⊢ ( 𝑦 ∈ ℕ → ( 1 / 𝑦 ) ∈ ℝ ) | |
| 55 | resubcl | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( 1 / 𝑦 ) ∈ ℝ ) → ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ) | |
| 56 | 53 54 55 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ) |
| 57 | 56 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ) |
| 58 | lelttr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ∧ ( 𝑧 − ( 1 / 𝑦 ) ) < 𝑧 ) → 𝑥 < 𝑧 ) ) | |
| 59 | 52 57 47 58 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → ( ( 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ∧ ( 𝑧 − ( 1 / 𝑦 ) ) < 𝑧 ) → 𝑥 < 𝑧 ) ) |
| 60 | 51 59 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) → 𝑥 < 𝑧 ) ) |
| 61 | 60 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) → 𝑥 < 𝑧 ) ) |
| 62 | 61 | imdistanda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 63 | 46 62 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 64 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 65 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ) → ( 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) | |
| 66 | 64 56 65 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 67 | rexr | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℝ* ) | |
| 68 | 67 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ* ) |
| 69 | elioomnf | ⊢ ( 𝑧 ∈ ℝ* → ( 𝑥 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝑥 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 72 | 63 66 71 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) → 𝑥 ∈ ( -∞ (,) 𝑧 ) ) ) |
| 73 | 72 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) → 𝑥 ∈ ( -∞ (,) 𝑧 ) ) ) |
| 74 | 73 70 | sylibd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 75 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → 𝑥 ∈ ℝ ) | |
| 76 | 75 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 77 | 76 | mnfltd | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → -∞ < 𝑥 ) |
| 78 | 56 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ ) |
| 79 | 54 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → ( 1 / 𝑦 ) ∈ ℝ ) |
| 80 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → 𝑧 ∈ ℝ ) | |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → 𝑧 ∈ ℝ ) |
| 82 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) | |
| 83 | 79 81 76 82 | ltsub13d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → 𝑥 < ( 𝑧 − ( 1 / 𝑦 ) ) ) |
| 84 | 76 78 83 | ltled | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) |
| 85 | 66 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → ( 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 86 | 76 77 84 85 | mpbir3and | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ∧ ( 𝑦 ∈ ℕ ∧ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) ) → 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) |
| 87 | 80 75 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → ( 𝑧 − 𝑥 ) ∈ ℝ ) |
| 88 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → 𝑥 < 𝑧 ) | |
| 89 | 75 80 | posdifd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → ( 𝑥 < 𝑧 ↔ 0 < ( 𝑧 − 𝑥 ) ) ) |
| 90 | 88 89 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → 0 < ( 𝑧 − 𝑥 ) ) |
| 91 | nnrecl | ⊢ ( ( ( 𝑧 − 𝑥 ) ∈ ℝ ∧ 0 < ( 𝑧 − 𝑥 ) ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) | |
| 92 | 87 90 91 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → ∃ 𝑦 ∈ ℕ ( 1 / 𝑦 ) < ( 𝑧 − 𝑥 ) ) |
| 93 | 86 92 | reximddv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) → ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) |
| 94 | 93 | ex | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) → ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 95 | 74 94 | impbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 𝑧 ) ) ) |
| 96 | 95 70 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℕ 𝑥 ∈ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ 𝑥 ∈ ( -∞ (,) 𝑧 ) ) ) |
| 97 | 45 96 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝑥 ∈ ∪ 𝑦 ∈ ℕ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ↔ 𝑥 ∈ ( -∞ (,) 𝑧 ) ) ) |
| 98 | 97 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∪ 𝑦 ∈ ℕ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) = ( -∞ (,) 𝑧 ) ) |
| 99 | 98 | imaeq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ◡ 𝐹 “ ∪ 𝑦 ∈ ℕ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ) |
| 100 | 44 99 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ) |
| 101 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 102 | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → Fun 𝐹 ) | |
| 103 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 104 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) ) | |
| 105 | 101 102 103 104 | 4syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) ) |
| 106 | 64 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → -∞ ∈ ℝ* ) |
| 107 | 56 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ) |
| 108 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 109 | 108 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → +∞ ∈ ℝ* ) |
| 110 | 56 | mnfltd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → -∞ < ( 𝑧 − ( 1 / 𝑦 ) ) ) |
| 111 | 56 | ltpnfd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( 𝑧 − ( 1 / 𝑦 ) ) < +∞ ) |
| 112 | df-ioc | ⊢ (,] = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 ≤ 𝑣 ) } ) | |
| 113 | df-ioo | ⊢ (,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 114 | xrltnle | ⊢ ( ( ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 − ( 1 / 𝑦 ) ) < 𝑥 ↔ ¬ 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ) ) | |
| 115 | xrlelttr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑥 ≤ ( 𝑧 − ( 1 / 𝑦 ) ) ∧ ( 𝑧 − ( 1 / 𝑦 ) ) < +∞ ) → 𝑥 < +∞ ) ) | |
| 116 | xrlttr | ⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( -∞ < ( 𝑧 − ( 1 / 𝑦 ) ) ∧ ( 𝑧 − ( 1 / 𝑦 ) ) < 𝑥 ) → -∞ < 𝑥 ) ) | |
| 117 | 112 113 114 113 115 116 | ixxun | ⊢ ( ( ( -∞ ∈ ℝ* ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < ( 𝑧 − ( 1 / 𝑦 ) ) ∧ ( 𝑧 − ( 1 / 𝑦 ) ) < +∞ ) ) → ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∪ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 118 | 106 107 109 110 111 117 | syl32anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∪ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 119 | uncom | ⊢ ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∪ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∪ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) | |
| 120 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 121 | 118 119 120 | 3eqtr3g | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∪ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ℝ ) |
| 122 | ioossre | ⊢ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ⊆ ℝ | |
| 123 | incom | ⊢ ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∩ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∩ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) | |
| 124 | 112 113 114 | ixxdisj | ⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∩ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ∅ ) |
| 125 | 64 108 124 | mp3an13 | ⊢ ( ( 𝑧 − ( 1 / 𝑦 ) ) ∈ ℝ* → ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∩ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ∅ ) |
| 126 | 107 125 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ∩ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ∅ ) |
| 127 | 123 126 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∩ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ∅ ) |
| 128 | uneqdifeq | ⊢ ( ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ⊆ ℝ ∧ ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∩ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ∅ ) → ( ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∪ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ℝ ↔ ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) | |
| 129 | 122 127 128 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ∪ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) = ℝ ↔ ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 130 | 121 129 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) = ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) |
| 131 | 130 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) = ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 132 | 105 131 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) = ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ) |
| 133 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 134 | oveq1 | ⊢ ( 𝑥 = ( 𝑧 − ( 1 / 𝑦 ) ) → ( 𝑥 (,) +∞ ) = ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) | |
| 135 | 134 | imaeq2d | ⊢ ( 𝑥 = ( 𝑧 − ( 1 / 𝑦 ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) |
| 136 | 135 | eleq1d | ⊢ ( 𝑥 = ( 𝑧 − ( 1 / 𝑦 ) ) → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ∈ dom vol ) ) |
| 137 | 32 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 138 | 136 137 56 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ∈ dom vol ) |
| 139 | difmbl | ⊢ ( ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) ∈ dom vol ) | |
| 140 | 133 138 139 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ( 𝑧 − ( 1 / 𝑦 ) ) (,) +∞ ) ) ) ∈ dom vol ) |
| 141 | 132 140 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) ∧ 𝑦 ∈ ℕ ) → ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ∈ dom vol ) |
| 142 | 141 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∀ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ∈ dom vol ) |
| 143 | iunmbl | ⊢ ( ∀ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ∈ dom vol → ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ∈ dom vol ) | |
| 144 | 142 143 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ∪ 𝑦 ∈ ℕ ( ◡ 𝐹 “ ( -∞ (,] ( 𝑧 − ( 1 / 𝑦 ) ) ) ) ∈ dom vol ) |
| 145 | 100 144 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ∈ dom vol ) |
| 146 | 145 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ∈ dom vol ) |
| 147 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( -∞ (,) 𝑧 ) = ( -∞ (,) 𝑥 ) ) | |
| 148 | 147 | imaeq2d | ⊢ ( 𝑧 = 𝑥 → ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ) |
| 149 | 148 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) ) |
| 150 | 149 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑧 ) ) ∈ dom vol ↔ ∀ 𝑥 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 151 | 146 150 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 152 | 151 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 153 | 1 43 2 152 | ismbf2d | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |