This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfimaopn . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfimaopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| mbfimaopn.2 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | ||
| mbfimaopn.3 | ⊢ 𝐵 = ( (,) “ ( ℚ × ℚ ) ) | ||
| mbfimaopn.4 | ⊢ 𝐾 = ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) | ||
| Assertion | mbfimaopnlem | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | mbfimaopn.2 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 3 | mbfimaopn.3 | ⊢ 𝐵 = ( (,) “ ( ℚ × ℚ ) ) | |
| 4 | mbfimaopn.4 | ⊢ 𝐾 = ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) | |
| 5 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 6 | 2 5 1 | cnrehmeo | ⊢ 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) |
| 7 | hmeocn | ⊢ ( 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) → 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) |
| 9 | cnima | ⊢ ( ( 𝐺 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐺 “ 𝐴 ) ∈ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐴 ∈ 𝐽 → ( ◡ 𝐺 “ 𝐴 ) ∈ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) |
| 11 | 3 | fveq2i | ⊢ ( topGen ‘ 𝐵 ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
| 12 | 11 | tgqioo | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ 𝐵 ) |
| 13 | 12 12 | oveq12i | ⊢ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) = ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) |
| 14 | qtopbas | ⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases | |
| 15 | 3 14 | eqeltri | ⊢ 𝐵 ∈ TopBases |
| 16 | txbasval | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) = ( 𝐵 ×t 𝐵 ) ) | |
| 17 | 15 15 16 | mp2an | ⊢ ( ( topGen ‘ 𝐵 ) ×t ( topGen ‘ 𝐵 ) ) = ( 𝐵 ×t 𝐵 ) |
| 18 | 4 | txval | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → ( 𝐵 ×t 𝐵 ) = ( topGen ‘ 𝐾 ) ) |
| 19 | 15 15 18 | mp2an | ⊢ ( 𝐵 ×t 𝐵 ) = ( topGen ‘ 𝐾 ) |
| 20 | 13 17 19 | 3eqtri | ⊢ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) = ( topGen ‘ 𝐾 ) |
| 21 | 10 20 | eleqtrdi | ⊢ ( 𝐴 ∈ 𝐽 → ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ) |
| 22 | 4 | txbas | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐵 ∈ TopBases ) → 𝐾 ∈ TopBases ) |
| 23 | 15 15 22 | mp2an | ⊢ 𝐾 ∈ TopBases |
| 24 | eltg3 | ⊢ ( 𝐾 ∈ TopBases → ( ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ↔ ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) ) | |
| 25 | 23 24 | ax-mp | ⊢ ( ( ◡ 𝐺 “ 𝐴 ) ∈ ( topGen ‘ 𝐾 ) ↔ ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
| 26 | 21 25 | sylib | ⊢ ( 𝐴 ∈ 𝐽 → ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑡 ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) |
| 28 | 2 | cnref1o | ⊢ 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ |
| 29 | f1ofo | ⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐺 : ( ℝ × ℝ ) –onto→ ℂ ) | |
| 30 | 28 29 | ax-mp | ⊢ 𝐺 : ( ℝ × ℝ ) –onto→ ℂ |
| 31 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 32 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 33 | 32 | toponunii | ⊢ ℂ = ∪ 𝐽 |
| 34 | 31 33 | sseqtrrdi | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ℂ ) |
| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝐴 ⊆ ℂ ) |
| 36 | foimacnv | ⊢ ( ( 𝐺 : ( ℝ × ℝ ) –onto→ ℂ ∧ 𝐴 ⊆ ℂ ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) | |
| 37 | 30 35 36 | sylancr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
| 38 | simprr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) | |
| 39 | 38 | imaeq2d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = ( 𝐺 “ ∪ 𝑡 ) ) |
| 40 | imauni | ⊢ ( 𝐺 “ ∪ 𝑡 ) = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) | |
| 41 | 39 40 | eqtrdi | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ 𝐴 ) ) = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) |
| 42 | 37 41 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝐴 = ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) |
| 43 | 42 | imaeq2d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) ) |
| 44 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑤 ∈ 𝑡 ( 𝐺 “ 𝑤 ) ) = ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) | |
| 45 | 43 44 | eqtrdi | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) = ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ) |
| 46 | ssdomg | ⊢ ( 𝐾 ∈ TopBases → ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ 𝐾 ) ) | |
| 47 | 23 46 | ax-mp | ⊢ ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ 𝐾 ) |
| 48 | omelon | ⊢ ω ∈ On | |
| 49 | nnenom | ⊢ ℕ ≈ ω | |
| 50 | 49 | ensymi | ⊢ ω ≈ ℕ |
| 51 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) | |
| 52 | 48 50 51 | mp2an | ⊢ ℕ ∈ dom card |
| 53 | qnnen | ⊢ ℚ ≈ ℕ | |
| 54 | xpen | ⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) | |
| 55 | 53 53 54 | mp2an | ⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
| 56 | xpnnen | ⊢ ( ℕ × ℕ ) ≈ ℕ | |
| 57 | 55 56 | entri | ⊢ ( ℚ × ℚ ) ≈ ℕ |
| 58 | 57 49 | entr2i | ⊢ ω ≈ ( ℚ × ℚ ) |
| 59 | isnumi | ⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) | |
| 60 | 48 58 59 | mp2an | ⊢ ( ℚ × ℚ ) ∈ dom card |
| 61 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 62 | ffun | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) | |
| 63 | 61 62 | ax-mp | ⊢ Fun (,) |
| 64 | qssre | ⊢ ℚ ⊆ ℝ | |
| 65 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 66 | 64 65 | sstri | ⊢ ℚ ⊆ ℝ* |
| 67 | xpss12 | ⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) | |
| 68 | 66 66 67 | mp2an | ⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
| 69 | 61 | fdmi | ⊢ dom (,) = ( ℝ* × ℝ* ) |
| 70 | 68 69 | sseqtrri | ⊢ ( ℚ × ℚ ) ⊆ dom (,) |
| 71 | fores | ⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) | |
| 72 | 63 70 71 | mp2an | ⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
| 73 | fodomnum | ⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) | |
| 74 | 60 72 73 | mp2 | ⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
| 75 | 3 74 | eqbrtri | ⊢ 𝐵 ≼ ( ℚ × ℚ ) |
| 76 | domentr | ⊢ ( ( 𝐵 ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ℕ ) → 𝐵 ≼ ℕ ) | |
| 77 | 75 57 76 | mp2an | ⊢ 𝐵 ≼ ℕ |
| 78 | 15 | elexi | ⊢ 𝐵 ∈ V |
| 79 | 78 | xpdom1 | ⊢ ( 𝐵 ≼ ℕ → ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) ) |
| 80 | 77 79 | ax-mp | ⊢ ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) |
| 81 | nnex | ⊢ ℕ ∈ V | |
| 82 | 81 | xpdom2 | ⊢ ( 𝐵 ≼ ℕ → ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) ) |
| 83 | 77 82 | ax-mp | ⊢ ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) |
| 84 | domtr | ⊢ ( ( ( 𝐵 × 𝐵 ) ≼ ( ℕ × 𝐵 ) ∧ ( ℕ × 𝐵 ) ≼ ( ℕ × ℕ ) ) → ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) ) | |
| 85 | 80 83 84 | mp2an | ⊢ ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) |
| 86 | domentr | ⊢ ( ( ( 𝐵 × 𝐵 ) ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → ( 𝐵 × 𝐵 ) ≼ ℕ ) | |
| 87 | 85 56 86 | mp2an | ⊢ ( 𝐵 × 𝐵 ) ≼ ℕ |
| 88 | numdom | ⊢ ( ( ℕ ∈ dom card ∧ ( 𝐵 × 𝐵 ) ≼ ℕ ) → ( 𝐵 × 𝐵 ) ∈ dom card ) | |
| 89 | 52 87 88 | mp2an | ⊢ ( 𝐵 × 𝐵 ) ∈ dom card |
| 90 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) | |
| 91 | vex | ⊢ 𝑥 ∈ V | |
| 92 | vex | ⊢ 𝑦 ∈ V | |
| 93 | 91 92 | xpex | ⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 94 | 90 93 | fnmpoi | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) |
| 95 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ) | |
| 96 | 94 95 | mpbi | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) |
| 97 | fodomnum | ⊢ ( ( 𝐵 × 𝐵 ) ∈ dom card → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝐵 × 𝐵 ) –onto→ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) ) ) | |
| 98 | 89 96 97 | mp2 | ⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) |
| 99 | domtr | ⊢ ( ( ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ≼ ℕ ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ℕ ) | |
| 100 | 98 87 99 | mp2an | ⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ≼ ℕ |
| 101 | 4 100 | eqbrtri | ⊢ 𝐾 ≼ ℕ |
| 102 | domtr | ⊢ ( ( 𝑡 ≼ 𝐾 ∧ 𝐾 ≼ ℕ ) → 𝑡 ≼ ℕ ) | |
| 103 | 47 101 102 | sylancl | ⊢ ( 𝑡 ⊆ 𝐾 → 𝑡 ≼ ℕ ) |
| 104 | 103 | ad2antrl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → 𝑡 ≼ ℕ ) |
| 105 | 4 | eleq2i | ⊢ ( 𝑤 ∈ 𝐾 ↔ 𝑤 ∈ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 106 | 90 93 | elrnmpo | ⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 × 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) ) |
| 107 | 105 106 | bitri | ⊢ ( 𝑤 ∈ 𝐾 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) ) |
| 108 | elin | ⊢ ( 𝑧 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ) | |
| 109 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 110 | 109 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 111 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 112 | 110 111 | sylan | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 113 | 112 | eleq1d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ↔ ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ) ) |
| 114 | fvco3 | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 115 | 110 114 | sylan | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 116 | 115 | eleq1d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ↔ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) |
| 117 | 113 116 | anbi12d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) ) |
| 118 | 110 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 119 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 120 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ℑ ‘ 𝑤 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 121 | 119 120 | opeq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → 〈 ( ℜ ‘ 𝑤 ) , ( ℑ ‘ 𝑤 ) 〉 = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
| 122 | 2 | cnrecnv | ⊢ ◡ 𝐺 = ( 𝑤 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑤 ) , ( ℑ ‘ 𝑤 ) 〉 ) |
| 123 | opex | ⊢ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ V | |
| 124 | 121 122 123 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ → ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
| 125 | 118 124 | syl | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ) |
| 126 | 125 | eleq1d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ↔ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ) ) |
| 127 | 118 | biantrurd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) |
| 128 | 126 127 | bitr3d | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) |
| 129 | opelxp | ⊢ ( 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) 〉 ∈ ( 𝑥 × 𝑦 ) ↔ ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ) | |
| 130 | f1ocnv | ⊢ ( 𝐺 : ( ℝ × ℝ ) –1-1-onto→ ℂ → ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) ) | |
| 131 | f1ofn | ⊢ ( ◡ 𝐺 : ℂ –1-1-onto→ ( ℝ × ℝ ) → ◡ 𝐺 Fn ℂ ) | |
| 132 | 28 130 131 | mp2b | ⊢ ◡ 𝐺 Fn ℂ |
| 133 | elpreima | ⊢ ( ◡ 𝐺 Fn ℂ → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) ) | |
| 134 | 132 133 | ax-mp | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ) |
| 135 | imacnvcnv | ⊢ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) = ( 𝐺 “ ( 𝑥 × 𝑦 ) ) | |
| 136 | 135 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( ◡ ◡ 𝐺 “ ( 𝑥 × 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) |
| 137 | 134 136 | bitr3i | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( ◡ 𝐺 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝑥 × 𝑦 ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) |
| 138 | 128 129 137 | 3bitr3g | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑥 ∧ ( ℑ ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
| 139 | 117 138 | bitrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
| 140 | 139 | pm5.32da | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 141 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 142 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) | |
| 143 | 141 109 142 | sylancr | ⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 144 | ffn | ⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ℜ ∘ 𝐹 ) Fn dom 𝐹 ) | |
| 145 | elpreima | ⊢ ( ( ℜ ∘ 𝐹 ) Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ) ) | |
| 146 | 143 144 145 | 3syl | ⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 147 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 148 | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) | |
| 149 | 147 109 148 | sylancr | ⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 150 | ffn | ⊢ ( ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ℑ ∘ 𝐹 ) Fn dom 𝐹 ) | |
| 151 | elpreima | ⊢ ( ( ℑ ∘ 𝐹 ) Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) | |
| 152 | 149 150 151 | 3syl | ⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) |
| 153 | 146 152 | anbi12d | ⊢ ( 𝐹 ∈ MblFn → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
| 154 | anandi | ⊢ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ↔ ( ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ) ∧ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) | |
| 155 | 153 154 | bitr4di | ⊢ ( 𝐹 ∈ MblFn → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
| 156 | 155 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( ( ( ℜ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑥 ∧ ( ( ℑ ∘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑦 ) ) ) ) |
| 157 | ffn | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → 𝐹 Fn dom 𝐹 ) | |
| 158 | elpreima | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) | |
| 159 | 109 157 158 | 3syl | ⊢ ( 𝐹 ∈ MblFn → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 160 | 159 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ↔ ( 𝑧 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 161 | 140 156 160 | 3bitr4d | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∧ 𝑧 ∈ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 162 | 108 161 | bitrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) ) |
| 163 | 162 | eqrdv | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) = ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
| 164 | ismbfcn | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) | |
| 165 | 109 164 | syl | ⊢ ( 𝐹 ∈ MblFn → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
| 166 | 165 | ibi | ⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) |
| 167 | 166 | simpld | ⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
| 168 | ismbf | ⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 169 | 143 168 | syl | ⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
| 170 | 167 169 | mpbid | ⊢ ( 𝐹 ∈ MblFn → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 171 | 170 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 172 | imassrn | ⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) | |
| 173 | 3 172 | eqsstri | ⊢ 𝐵 ⊆ ran (,) |
| 174 | simprl | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 175 | 173 174 | sselid | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ran (,) ) |
| 176 | rsp | ⊢ ( ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol → ( 𝑥 ∈ ran (,) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) | |
| 177 | 171 175 176 | sylc | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 178 | 166 | simprd | ⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
| 179 | ismbf | ⊢ ( ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) | |
| 180 | 149 179 | syl | ⊢ ( 𝐹 ∈ MblFn → ( ( ℑ ∘ 𝐹 ) ∈ MblFn ↔ ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) |
| 181 | 178 180 | mpbid | ⊢ ( 𝐹 ∈ MblFn → ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
| 182 | 181 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
| 183 | simprr | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 184 | 173 183 | sselid | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ran (,) ) |
| 185 | rsp | ⊢ ( ∀ 𝑦 ∈ ran (,) ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol → ( 𝑦 ∈ ran (,) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) ) | |
| 186 | 182 184 185 | sylc | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) |
| 187 | inmbl | ⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ∈ dom vol ) | |
| 188 | 177 186 187 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∩ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑦 ) ) ∈ dom vol ) |
| 189 | 163 188 | eqeltrrd | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ∈ dom vol ) |
| 190 | imaeq2 | ⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( 𝐺 “ 𝑤 ) = ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) | |
| 191 | 190 | imaeq2d | ⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) = ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ) |
| 192 | 191 | eleq1d | ⊢ ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝐺 “ ( 𝑥 × 𝑦 ) ) ) ∈ dom vol ) ) |
| 193 | 189 192 | syl5ibrcom | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
| 194 | 193 | rexlimdvva | ⊢ ( 𝐹 ∈ MblFn → ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝑤 = ( 𝑥 × 𝑦 ) → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
| 195 | 107 194 | biimtrid | ⊢ ( 𝐹 ∈ MblFn → ( 𝑤 ∈ 𝐾 → ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) |
| 196 | 195 | ralrimiv | ⊢ ( 𝐹 ∈ MblFn → ∀ 𝑤 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
| 197 | ssralv | ⊢ ( 𝑡 ⊆ 𝐾 → ( ∀ 𝑤 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) ) | |
| 198 | 196 197 | mpan9 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝑡 ⊆ 𝐾 ) → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
| 199 | 198 | ad2ant2r | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
| 200 | iunmbl2 | ⊢ ( ( 𝑡 ≼ ℕ ∧ ∀ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) → ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) | |
| 201 | 104 199 200 | syl2anc | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ∪ 𝑤 ∈ 𝑡 ( ◡ 𝐹 “ ( 𝐺 “ 𝑤 ) ) ∈ dom vol ) |
| 202 | 45 201 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑡 ⊆ 𝐾 ∧ ( ◡ 𝐺 “ 𝐴 ) = ∪ 𝑡 ) ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |
| 203 | 27 202 | exlimddv | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝐴 ) ∈ dom vol ) |