This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismbf2d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| ismbf2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | ||
| ismbf2d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | ||
| ismbf2d.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | ||
| Assertion | ismbf2d | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | ismbf2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 3 | ismbf2d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | |
| 4 | ismbf2d.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | |
| 5 | elxr | ⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ( +∞ (,) +∞ ) ) | |
| 7 | iooid | ⊢ ( +∞ (,) +∞ ) = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝑥 = +∞ → ( 𝑥 (,) +∞ ) = ∅ ) |
| 9 | 8 | imaeq2d | ⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 10 | ima0 | ⊢ ( ◡ 𝐹 “ ∅ ) = ∅ | |
| 11 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 12 | 10 11 | eqeltri | ⊢ ( ◡ 𝐹 “ ∅ ) ∈ dom vol |
| 13 | 9 12 | eqeltrdi | ⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 15 | fimacnv | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) | |
| 16 | 1 15 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
| 17 | 16 2 | eqeltrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 18 | oveq1 | ⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ( -∞ (,) +∞ ) ) | |
| 19 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑥 = -∞ → ( 𝑥 (,) +∞ ) = ℝ ) |
| 21 | 20 | imaeq2d | ⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) = ( ◡ 𝐹 “ ℝ ) ) |
| 22 | 21 | eleq1d | ⊢ ( 𝑥 = -∞ → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 23 | 17 22 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 25 | 3 14 24 | 3jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 26 | 5 25 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 27 | oveq2 | ⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) +∞ ) ) | |
| 28 | 27 19 | eqtrdi | ⊢ ( 𝑥 = +∞ → ( -∞ (,) 𝑥 ) = ℝ ) |
| 29 | 28 | imaeq2d | ⊢ ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ℝ ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑥 = +∞ → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
| 31 | 17 30 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = +∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 = +∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 33 | oveq2 | ⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ( -∞ (,) -∞ ) ) | |
| 34 | iooid | ⊢ ( -∞ (,) -∞ ) = ∅ | |
| 35 | 33 34 | eqtrdi | ⊢ ( 𝑥 = -∞ → ( -∞ (,) 𝑥 ) = ∅ ) |
| 36 | 35 | imaeq2d | ⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ∅ ) ) |
| 37 | 36 12 | eqeltrdi | ⊢ ( 𝑥 = -∞ → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = -∞ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 39 | 4 32 38 | 3jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 40 | 5 39 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 41 | 1 26 40 | ismbfd | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |