This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplified form of ismbfd . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismbf3d.1 | |- ( ph -> F : A --> RR ) |
|
| ismbf3d.2 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
||
| Assertion | ismbf3d | |- ( ph -> F e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf3d.1 | |- ( ph -> F : A --> RR ) |
|
| 2 | ismbf3d.2 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
|
| 3 | fimacnv | |- ( F : A --> RR -> ( `' F " RR ) = A ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( `' F " RR ) = A ) |
| 5 | imaiun | |- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = U_ y e. NN ( `' F " ( -u y (,) +oo ) ) |
|
| 6 | ioossre | |- ( -u y (,) +oo ) C_ RR |
|
| 7 | 6 | rgenw | |- A. y e. NN ( -u y (,) +oo ) C_ RR |
| 8 | iunss | |- ( U_ y e. NN ( -u y (,) +oo ) C_ RR <-> A. y e. NN ( -u y (,) +oo ) C_ RR ) |
|
| 9 | 7 8 | mpbir | |- U_ y e. NN ( -u y (,) +oo ) C_ RR |
| 10 | renegcl | |- ( z e. RR -> -u z e. RR ) |
|
| 11 | arch | |- ( -u z e. RR -> E. y e. NN -u z < y ) |
|
| 12 | 10 11 | syl | |- ( z e. RR -> E. y e. NN -u z < y ) |
| 13 | simpl | |- ( ( z e. RR /\ y e. NN ) -> z e. RR ) |
|
| 14 | 13 | biantrurd | |- ( ( z e. RR /\ y e. NN ) -> ( -u y < z <-> ( z e. RR /\ -u y < z ) ) ) |
| 15 | nnre | |- ( y e. NN -> y e. RR ) |
|
| 16 | ltnegcon1 | |- ( ( z e. RR /\ y e. RR ) -> ( -u z < y <-> -u y < z ) ) |
|
| 17 | 15 16 | sylan2 | |- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> -u y < z ) ) |
| 18 | 15 | adantl | |- ( ( z e. RR /\ y e. NN ) -> y e. RR ) |
| 19 | 18 | renegcld | |- ( ( z e. RR /\ y e. NN ) -> -u y e. RR ) |
| 20 | 19 | rexrd | |- ( ( z e. RR /\ y e. NN ) -> -u y e. RR* ) |
| 21 | elioopnf | |- ( -u y e. RR* -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( z e. RR /\ y e. NN ) -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
| 23 | 14 17 22 | 3bitr4d | |- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> z e. ( -u y (,) +oo ) ) ) |
| 24 | 23 | rexbidva | |- ( z e. RR -> ( E. y e. NN -u z < y <-> E. y e. NN z e. ( -u y (,) +oo ) ) ) |
| 25 | 12 24 | mpbid | |- ( z e. RR -> E. y e. NN z e. ( -u y (,) +oo ) ) |
| 26 | eliun | |- ( z e. U_ y e. NN ( -u y (,) +oo ) <-> E. y e. NN z e. ( -u y (,) +oo ) ) |
|
| 27 | 25 26 | sylibr | |- ( z e. RR -> z e. U_ y e. NN ( -u y (,) +oo ) ) |
| 28 | 27 | ssriv | |- RR C_ U_ y e. NN ( -u y (,) +oo ) |
| 29 | 9 28 | eqssi | |- U_ y e. NN ( -u y (,) +oo ) = RR |
| 30 | 29 | imaeq2i | |- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = ( `' F " RR ) |
| 31 | 5 30 | eqtr3i | |- U_ y e. NN ( `' F " ( -u y (,) +oo ) ) = ( `' F " RR ) |
| 32 | 2 | ralrimiva | |- ( ph -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 33 | 15 | renegcld | |- ( y e. NN -> -u y e. RR ) |
| 34 | oveq1 | |- ( x = -u y -> ( x (,) +oo ) = ( -u y (,) +oo ) ) |
|
| 35 | 34 | imaeq2d | |- ( x = -u y -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( -u y (,) +oo ) ) ) |
| 36 | 35 | eleq1d | |- ( x = -u y -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) ) |
| 37 | 36 | rspccva | |- ( ( A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol /\ -u y e. RR ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 38 | 32 33 37 | syl2an | |- ( ( ph /\ y e. NN ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 39 | 38 | ralrimiva | |- ( ph -> A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 40 | iunmbl | |- ( A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
|
| 41 | 39 40 | syl | |- ( ph -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 42 | 31 41 | eqeltrrid | |- ( ph -> ( `' F " RR ) e. dom vol ) |
| 43 | 4 42 | eqeltrrd | |- ( ph -> A e. dom vol ) |
| 44 | imaiun | |- ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) |
|
| 45 | eliun | |- ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
|
| 46 | 3simpb | |- ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) ) |
|
| 47 | simplr | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> z e. RR ) |
|
| 48 | nnrp | |- ( y e. NN -> y e. RR+ ) |
|
| 49 | 48 | ad2antrl | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> y e. RR+ ) |
| 50 | 49 | rpreccld | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( 1 / y ) e. RR+ ) |
| 51 | 47 50 | ltsubrpd | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) < z ) |
| 52 | simprr | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> x e. RR ) |
|
| 53 | simpr | |- ( ( ph /\ z e. RR ) -> z e. RR ) |
|
| 54 | nnrecre | |- ( y e. NN -> ( 1 / y ) e. RR ) |
|
| 55 | resubcl | |- ( ( z e. RR /\ ( 1 / y ) e. RR ) -> ( z - ( 1 / y ) ) e. RR ) |
|
| 56 | 53 54 55 | syl2an | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR ) |
| 57 | 56 | adantrr | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) e. RR ) |
| 58 | lelttr | |- ( ( x e. RR /\ ( z - ( 1 / y ) ) e. RR /\ z e. RR ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
|
| 59 | 52 57 47 58 | syl3anc | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
| 60 | 51 59 | mpan2d | |- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
| 61 | 60 | anassrs | |- ( ( ( ( ph /\ z e. RR ) /\ y e. NN ) /\ x e. RR ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
| 62 | 61 | imdistanda | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 63 | 46 62 | syl5 | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 64 | mnfxr | |- -oo e. RR* |
|
| 65 | elioc2 | |- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
|
| 66 | 64 56 65 | sylancr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
| 67 | rexr | |- ( z e. RR -> z e. RR* ) |
|
| 68 | 67 | adantl | |- ( ( ph /\ z e. RR ) -> z e. RR* ) |
| 69 | elioomnf | |- ( z e. RR* -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
|
| 70 | 68 69 | syl | |- ( ( ph /\ z e. RR ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
| 71 | 70 | adantr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
| 72 | 63 66 71 | 3imtr4d | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
| 73 | 72 | rexlimdva | |- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
| 74 | 73 70 | sylibd | |- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 75 | simprl | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x e. RR ) |
|
| 76 | 75 | adantr | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. RR ) |
| 77 | 76 | mnfltd | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> -oo < x ) |
| 78 | 56 | ad2ant2r | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( z - ( 1 / y ) ) e. RR ) |
| 79 | 54 | ad2antrl | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) e. RR ) |
| 80 | simplr | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> z e. RR ) |
|
| 81 | 80 | adantr | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> z e. RR ) |
| 82 | simprr | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) < ( z - x ) ) |
|
| 83 | 79 81 76 82 | ltsub13d | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x < ( z - ( 1 / y ) ) ) |
| 84 | 76 78 83 | ltled | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x <_ ( z - ( 1 / y ) ) ) |
| 85 | 66 | ad2ant2r | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
| 86 | 76 77 84 85 | mpbir3and | |- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 87 | 80 75 | resubcld | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( z - x ) e. RR ) |
| 88 | simprr | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x < z ) |
|
| 89 | 75 80 | posdifd | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( x < z <-> 0 < ( z - x ) ) ) |
| 90 | 88 89 | mpbid | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> 0 < ( z - x ) ) |
| 91 | nnrecl | |- ( ( ( z - x ) e. RR /\ 0 < ( z - x ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
|
| 92 | 87 90 91 | syl2anc | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
| 93 | 86 92 | reximddv | |- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 94 | 93 | ex | |- ( ( ph /\ z e. RR ) -> ( ( x e. RR /\ x < z ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 95 | 74 94 | impbid | |- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ x < z ) ) ) |
| 96 | 95 70 | bitr4d | |- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
| 97 | 45 96 | bitrid | |- ( ( ph /\ z e. RR ) -> ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
| 98 | 97 | eqrdv | |- ( ( ph /\ z e. RR ) -> U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) = ( -oo (,) z ) ) |
| 99 | 98 | imaeq2d | |- ( ( ph /\ z e. RR ) -> ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
| 100 | 44 99 | eqtr3id | |- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
| 101 | 1 | ad2antrr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> F : A --> RR ) |
| 102 | ffun | |- ( F : A --> RR -> Fun F ) |
|
| 103 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 104 | imadif | |- ( Fun `' `' F -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
|
| 105 | 101 102 103 104 | 4syl | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
| 106 | 64 | a1i | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo e. RR* ) |
| 107 | 56 | rexrd | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR* ) |
| 108 | pnfxr | |- +oo e. RR* |
|
| 109 | 108 | a1i | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> +oo e. RR* ) |
| 110 | 56 | mnfltd | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo < ( z - ( 1 / y ) ) ) |
| 111 | 56 | ltpnfd | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) < +oo ) |
| 112 | df-ioc | |- (,] = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w <_ v ) } ) |
|
| 113 | df-ioo | |- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
|
| 114 | xrltnle | |- ( ( ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( z - ( 1 / y ) ) < x <-> -. x <_ ( z - ( 1 / y ) ) ) ) |
|
| 115 | xrlelttr | |- ( ( x e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) -> x < +oo ) ) |
|
| 116 | xrlttr | |- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < x ) -> -oo < x ) ) |
|
| 117 | 112 113 114 113 115 116 | ixxun | |- ( ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) /\ ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 118 | 106 107 109 110 111 117 | syl32anc | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 119 | uncom | |- ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
|
| 120 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 121 | 118 119 120 | 3eqtr3g | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR ) |
| 122 | ioossre | |- ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR |
|
| 123 | incom | |- ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) |
|
| 124 | 112 113 114 | ixxdisj | |- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 125 | 64 108 124 | mp3an13 | |- ( ( z - ( 1 / y ) ) e. RR* -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 126 | 107 125 | syl | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 127 | 123 126 | eqtrid | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) |
| 128 | uneqdifeq | |- ( ( ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR /\ ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
|
| 129 | 122 127 128 | sylancr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 130 | 121 129 | mpbid | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 131 | 130 | imaeq2d | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 132 | 105 131 | eqtr3d | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 133 | 42 | ad2antrr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " RR ) e. dom vol ) |
| 134 | oveq1 | |- ( x = ( z - ( 1 / y ) ) -> ( x (,) +oo ) = ( ( z - ( 1 / y ) ) (,) +oo ) ) |
|
| 135 | 134 | imaeq2d | |- ( x = ( z - ( 1 / y ) ) -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) |
| 136 | 135 | eleq1d | |- ( x = ( z - ( 1 / y ) ) -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) ) |
| 137 | 32 | ad2antrr | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 138 | 136 137 56 | rspcdva | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) |
| 139 | difmbl | |- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
|
| 140 | 133 138 139 | syl2anc | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
| 141 | 132 140 | eqeltrrd | |- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 142 | 141 | ralrimiva | |- ( ( ph /\ z e. RR ) -> A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 143 | iunmbl | |- ( A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
|
| 144 | 142 143 | syl | |- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 145 | 100 144 | eqeltrrd | |- ( ( ph /\ z e. RR ) -> ( `' F " ( -oo (,) z ) ) e. dom vol ) |
| 146 | 145 | ralrimiva | |- ( ph -> A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol ) |
| 147 | oveq2 | |- ( z = x -> ( -oo (,) z ) = ( -oo (,) x ) ) |
|
| 148 | 147 | imaeq2d | |- ( z = x -> ( `' F " ( -oo (,) z ) ) = ( `' F " ( -oo (,) x ) ) ) |
| 149 | 148 | eleq1d | |- ( z = x -> ( ( `' F " ( -oo (,) z ) ) e. dom vol <-> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) |
| 150 | 149 | cbvralvw | |- ( A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol <-> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 151 | 146 150 | sylib | |- ( ph -> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 152 | 151 | r19.21bi | |- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 153 | 1 43 2 152 | ismbf2d | |- ( ph -> F e. MblFn ) |