This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlttr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) | |
| 3 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 4 | lttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 6 | 5 | an32s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 7 | rexr | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) | |
| 8 | pnfnlt | ⊢ ( 𝐶 ∈ ℝ* → ¬ +∞ < 𝐶 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐶 ∈ ℝ → ¬ +∞ < 𝐶 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ +∞ < 𝐶 ) |
| 11 | breq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) |
| 13 | 10 12 | mtbird | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐶 ) |
| 14 | 13 | pm2.21d | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 16 | 15 | adantld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 17 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 18 | nltmnf | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 21 | breq2 | ⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 23 | 20 22 | mtbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 24 | 23 | pm2.21d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 26 | 25 | adantrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 27 | 6 16 26 | 3jaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 28 | 3 27 | sylan2b | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 29 | 28 | an32s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 30 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < +∞ ) |
| 32 | breq2 | ⊢ ( 𝐶 = +∞ → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 35 | 34 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 36 | 35 | a1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 37 | nltmnf | ⊢ ( 𝐵 ∈ ℝ* → ¬ 𝐵 < -∞ ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < -∞ ) |
| 39 | breq2 | ⊢ ( 𝐶 = -∞ → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) |
| 41 | 38 40 | mtbird | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < 𝐶 ) |
| 42 | 41 | pm2.21d | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 43 | 42 | adantld | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 44 | 43 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 45 | 29 36 44 | 3jaodan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 46 | 45 | anasss | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 47 | pnfnlt | ⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 49 | breq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 51 | 48 50 | mtbird | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐴 < 𝐵 ) |
| 52 | 51 | pm2.21d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
| 53 | 52 | adantrd | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 54 | 53 | adantrr | ⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 55 | mnflt | ⊢ ( 𝐶 ∈ ℝ → -∞ < 𝐶 ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → -∞ < 𝐶 ) |
| 57 | breq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) | |
| 58 | 57 | adantr | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) |
| 59 | 56 58 | mpbird | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → 𝐴 < 𝐶 ) |
| 60 | 59 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 61 | 60 | adantlr | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 62 | mnfltpnf | ⊢ -∞ < +∞ | |
| 63 | breq12 | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ -∞ < +∞ ) ) | |
| 64 | 62 63 | mpbiri | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
| 65 | 64 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 67 | 43 | adantll | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 68 | 61 66 67 | 3jaodan | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 69 | 68 | anasss | ⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 70 | 46 54 69 | 3jaoian | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 71 | 70 | 3impb | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 72 | 2 71 | syl3an3b | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| 73 | 1 72 | syl3an1b | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |