This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismbfd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| ismbfd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | ||
| ismbfd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | ||
| Assertion | ismbfd | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbfd.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | ismbfd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | |
| 3 | ismbfd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | |
| 4 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 5 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 6 | ovelrn | ⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑧 ∈ ran (,) ↔ ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) ) ) | |
| 7 | 4 5 6 | mp2b | ⊢ ( 𝑧 ∈ ran (,) ↔ ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑥 ∈ ℝ* ) | |
| 9 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → +∞ ∈ ℝ* ) |
| 11 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → -∞ ∈ ℝ* ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑦 ∈ ℝ* ) | |
| 14 | iooin | ⊢ ( ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) | |
| 15 | 8 10 12 13 14 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) |
| 16 | ifcl | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ∈ ℝ* ) | |
| 17 | 11 8 16 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ∈ ℝ* ) |
| 18 | mnfle | ⊢ ( 𝑥 ∈ ℝ* → -∞ ≤ 𝑥 ) | |
| 19 | xrleid | ⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ 𝑥 ) | |
| 20 | breq1 | ⊢ ( -∞ = if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) → ( -∞ ≤ 𝑥 ↔ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) ) | |
| 21 | breq1 | ⊢ ( 𝑥 = if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) → ( 𝑥 ≤ 𝑥 ↔ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) ) | |
| 22 | 20 21 | ifboth | ⊢ ( ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ 𝑥 ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
| 23 | 18 19 22 | syl2anc | ⊢ ( 𝑥 ∈ ℝ* → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
| 24 | 23 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ≤ 𝑥 ) |
| 25 | xrmax1 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → 𝑥 ≤ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ) | |
| 26 | 8 11 25 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑥 ≤ if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) ) |
| 27 | 17 8 24 26 | xrletrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) = 𝑥 ) |
| 28 | ifcl | ⊢ ( ( +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ∈ ℝ* ) | |
| 29 | 9 13 28 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ∈ ℝ* ) |
| 30 | xrmin2 | ⊢ ( ( +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ≤ 𝑦 ) | |
| 31 | 9 13 30 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ≤ 𝑦 ) |
| 32 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 33 | xrleid | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ 𝑦 ) | |
| 34 | breq2 | ⊢ ( +∞ = if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) → ( 𝑦 ≤ +∞ ↔ 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) | |
| 35 | breq2 | ⊢ ( 𝑦 = if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) → ( 𝑦 ≤ 𝑦 ↔ 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) ) | |
| 36 | 34 35 | ifboth | ⊢ ( ( 𝑦 ≤ +∞ ∧ 𝑦 ≤ 𝑦 ) → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
| 37 | 32 33 36 | syl2anc | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
| 38 | 37 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝑦 ≤ if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) |
| 39 | 29 13 31 38 | xrletrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) = 𝑦 ) |
| 40 | 27 39 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( if ( 𝑥 ≤ -∞ , -∞ , 𝑥 ) (,) if ( +∞ ≤ 𝑦 , +∞ , 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 41 | 15 40 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 42 | 41 | imaeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ) |
| 43 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 44 | 43 | ffund | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → Fun 𝐹 ) |
| 45 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( ( 𝑥 (,) +∞ ) ∩ ( -∞ (,) 𝑦 ) ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) |
| 47 | 42 46 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) = ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ) |
| 48 | 2 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 49 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ* ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 50 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( -∞ (,) 𝑥 ) = ( -∞ (,) 𝑦 ) ) | |
| 51 | 50 | imaeq2d | ⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) |
| 52 | 51 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) ) |
| 53 | 52 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ* ( ◡ 𝐹 “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 54 | 49 53 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ* ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 55 | 54 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 56 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) | |
| 57 | 48 55 56 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ( ◡ 𝐹 “ ( 𝑥 (,) +∞ ) ) ∩ ( ◡ 𝐹 “ ( -∞ (,) 𝑦 ) ) ) ∈ dom vol ) |
| 58 | 47 57 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ∈ dom vol ) |
| 59 | imaeq2 | ⊢ ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) = ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ) | |
| 60 | 59 | eleq1d | ⊢ ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( 𝑥 (,) 𝑦 ) ) ∈ dom vol ) ) |
| 61 | 58 60 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ( 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
| 62 | 61 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ* ∃ 𝑦 ∈ ℝ* 𝑧 = ( 𝑥 (,) 𝑦 ) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
| 63 | 7 62 | biimtrid | ⊢ ( 𝜑 → ( 𝑧 ∈ ran (,) → ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
| 64 | 63 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) |
| 65 | ismbf | ⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) | |
| 66 | 1 65 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ∀ 𝑧 ∈ ran (,) ( ◡ 𝐹 “ 𝑧 ) ∈ dom vol ) ) |
| 67 | 64 66 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |