This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| ixxun.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | ||
| ixxun.3 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 𝑇 𝑤 ↔ ¬ 𝑤 𝑆 𝐵 ) ) | ||
| Assertion | ixxdisj | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | ixxun.2 | ⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) | |
| 3 | ixxun.3 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 𝑇 𝑤 ↔ ¬ 𝑤 𝑆 𝐵 ) ) | |
| 4 | elin | ⊢ ( 𝑤 ∈ ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) ↔ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) ) | |
| 5 | 1 | elixx1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) |
| 8 | 7 | simp3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ) → 𝑤 𝑆 𝐵 ) |
| 9 | 8 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) ) → 𝑤 𝑆 𝐵 ) |
| 10 | 2 | elixx1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐵 𝑇 𝑤 ∧ 𝑤 𝑈 𝐶 ) ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐵 𝑇 𝑤 ∧ 𝑤 𝑈 𝐶 ) ) ) |
| 12 | 11 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → ( 𝑤 ∈ ℝ* ∧ 𝐵 𝑇 𝑤 ∧ 𝑤 𝑈 𝐶 ) ) |
| 13 | 12 | simp2d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → 𝐵 𝑇 𝑤 ) |
| 14 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → 𝐵 ∈ ℝ* ) | |
| 15 | 12 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → 𝑤 ∈ ℝ* ) |
| 16 | 14 15 3 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → ( 𝐵 𝑇 𝑤 ↔ ¬ 𝑤 𝑆 𝐵 ) ) |
| 17 | 13 16 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → ¬ 𝑤 𝑆 𝐵 ) |
| 18 | 17 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) ) → ¬ 𝑤 𝑆 𝐵 ) |
| 19 | 9 18 | pm2.65da | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ¬ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) ) |
| 20 | 19 | pm2.21d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ∧ 𝑤 ∈ ( 𝐵 𝑃 𝐶 ) ) → 𝑤 ∈ ∅ ) ) |
| 21 | 4 20 | biimtrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑤 ∈ ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) → 𝑤 ∈ ∅ ) ) |
| 22 | 21 | ssrdv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) ⊆ ∅ ) |
| 23 | ss0 | ⊢ ( ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) ⊆ ∅ → ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) = ∅ ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 𝑂 𝐵 ) ∩ ( 𝐵 𝑃 𝐶 ) ) = ∅ ) |