This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007) (Revised by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 2 | elioc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 4 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → -∞ ∈ ℝ* ) |
| 6 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 7 | simpr1 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ* ) | |
| 8 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → -∞ ≤ 𝐴 ) |
| 10 | simpr2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐴 < 𝐶 ) | |
| 11 | 5 6 7 9 10 | xrlelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → -∞ < 𝐶 ) |
| 12 | 1 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → +∞ ∈ ℝ* ) |
| 15 | simpr3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 ≤ 𝐵 ) | |
| 16 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐵 < +∞ ) |
| 18 | 7 12 14 15 17 | xrlelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 < +∞ ) |
| 19 | xrrebnd | ⊢ ( 𝐶 ∈ ℝ* → ( 𝐶 ∈ ℝ ↔ ( -∞ < 𝐶 ∧ 𝐶 < +∞ ) ) ) | |
| 20 | 7 19 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( 𝐶 ∈ ℝ ↔ ( -∞ < 𝐶 ∧ 𝐶 < +∞ ) ) ) |
| 21 | 11 18 20 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 22 | 21 10 15 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 24 | rexr | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) | |
| 25 | 24 | 3anim1i | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 26 | 23 25 | impbid1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 27 | 3 26 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |