This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpen . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leweon.1 | ⊢ 𝐿 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ) ∧ ( ( 1st ‘ 𝑥 ) ∈ ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) ∈ ( 2nd ‘ 𝑦 ) ) ) ) } | |
| r0weon.1 | ⊢ 𝑅 = { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } | ||
| infxpen.1 | ⊢ 𝑄 = ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) | ||
| infxpen.2 | ⊢ ( 𝜑 ↔ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) ) | ||
| infxpen.3 | ⊢ 𝑀 = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) | ||
| infxpen.4 | ⊢ 𝐽 = OrdIso ( 𝑄 , ( 𝑎 × 𝑎 ) ) | ||
| Assertion | infxpenlem | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leweon.1 | ⊢ 𝐿 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( On × On ) ∧ 𝑦 ∈ ( On × On ) ) ∧ ( ( 1st ‘ 𝑥 ) ∈ ( 1st ‘ 𝑦 ) ∨ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) ∈ ( 2nd ‘ 𝑦 ) ) ) ) } | |
| 2 | r0weon.1 | ⊢ 𝑅 = { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } | |
| 3 | infxpen.1 | ⊢ 𝑄 = ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) | |
| 4 | infxpen.2 | ⊢ ( 𝜑 ↔ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) ) | |
| 5 | infxpen.3 | ⊢ 𝑀 = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) | |
| 6 | infxpen.4 | ⊢ 𝐽 = OrdIso ( 𝑄 , ( 𝑎 × 𝑎 ) ) | |
| 7 | sseq2 | ⊢ ( 𝑎 = 𝑚 → ( ω ⊆ 𝑎 ↔ ω ⊆ 𝑚 ) ) | |
| 8 | xpeq12 | ⊢ ( ( 𝑎 = 𝑚 ∧ 𝑎 = 𝑚 ) → ( 𝑎 × 𝑎 ) = ( 𝑚 × 𝑚 ) ) | |
| 9 | 8 | anidms | ⊢ ( 𝑎 = 𝑚 → ( 𝑎 × 𝑎 ) = ( 𝑚 × 𝑚 ) ) |
| 10 | id | ⊢ ( 𝑎 = 𝑚 → 𝑎 = 𝑚 ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑎 = 𝑚 → ( ( 𝑎 × 𝑎 ) ≈ 𝑎 ↔ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
| 12 | 7 11 | imbi12d | ⊢ ( 𝑎 = 𝑚 → ( ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ↔ ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ) |
| 13 | sseq2 | ⊢ ( 𝑎 = 𝐴 → ( ω ⊆ 𝑎 ↔ ω ⊆ 𝐴 ) ) | |
| 14 | xpeq12 | ⊢ ( ( 𝑎 = 𝐴 ∧ 𝑎 = 𝐴 ) → ( 𝑎 × 𝑎 ) = ( 𝐴 × 𝐴 ) ) | |
| 15 | 14 | anidms | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 × 𝑎 ) = ( 𝐴 × 𝐴 ) ) |
| 16 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 17 | 15 16 | breq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 × 𝑎 ) ≈ 𝑎 ↔ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) |
| 18 | 13 17 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ↔ ( ω ⊆ 𝐴 → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) ) |
| 19 | vex | ⊢ 𝑎 ∈ V | |
| 20 | 19 19 | xpex | ⊢ ( 𝑎 × 𝑎 ) ∈ V |
| 21 | simpll | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ∈ On ) | |
| 22 | 4 21 | sylbi | ⊢ ( 𝜑 → 𝑎 ∈ On ) |
| 23 | onss | ⊢ ( 𝑎 ∈ On → 𝑎 ⊆ On ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝑎 ⊆ On ) |
| 25 | xpss12 | ⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ⊆ On ) → ( 𝑎 × 𝑎 ) ⊆ ( On × On ) ) | |
| 26 | 24 24 25 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ⊆ ( On × On ) ) |
| 27 | 1 2 | r0weon | ⊢ ( 𝑅 We ( On × On ) ∧ 𝑅 Se ( On × On ) ) |
| 28 | 27 | simpli | ⊢ 𝑅 We ( On × On ) |
| 29 | wess | ⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( On × On ) → ( 𝑅 We ( On × On ) → 𝑅 We ( 𝑎 × 𝑎 ) ) ) | |
| 30 | 26 28 29 | mpisyl | ⊢ ( 𝜑 → 𝑅 We ( 𝑎 × 𝑎 ) ) |
| 31 | weinxp | ⊢ ( 𝑅 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) | |
| 32 | 30 31 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) |
| 33 | weeq1 | ⊢ ( 𝑄 = ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) → ( 𝑄 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) ) | |
| 34 | 3 33 | ax-mp | ⊢ ( 𝑄 We ( 𝑎 × 𝑎 ) ↔ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) We ( 𝑎 × 𝑎 ) ) |
| 35 | 32 34 | sylibr | ⊢ ( 𝜑 → 𝑄 We ( 𝑎 × 𝑎 ) ) |
| 36 | 6 | oiiso | ⊢ ( ( ( 𝑎 × 𝑎 ) ∈ V ∧ 𝑄 We ( 𝑎 × 𝑎 ) ) → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
| 37 | 20 35 36 | sylancr | ⊢ ( 𝜑 → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
| 38 | isof1o | ⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → 𝐽 : dom 𝐽 –1-1-onto→ ( 𝑎 × 𝑎 ) ) | |
| 39 | f1ocnv | ⊢ ( 𝐽 : dom 𝐽 –1-1-onto→ ( 𝑎 × 𝑎 ) → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 ) | |
| 40 | f1of1 | ⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) | |
| 41 | 37 38 39 40 | 4syl | ⊢ ( 𝜑 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) |
| 42 | f1f1orn | ⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ ran ◡ 𝐽 ) | |
| 43 | 20 | f1oen | ⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ ran ◡ 𝐽 → ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ) |
| 44 | 41 42 43 | 3syl | ⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ) |
| 45 | f1ofn | ⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ) | |
| 46 | 37 38 39 45 | 4syl | ⊢ ( 𝜑 → ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ) |
| 47 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) ) |
| 48 | 38 39 40 | 3syl | ⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ) |
| 49 | cnvimass | ⊢ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ dom 𝑄 | |
| 50 | inss2 | ⊢ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) | |
| 51 | 3 50 | eqsstri | ⊢ 𝑄 ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) |
| 52 | dmss | ⊢ ( 𝑄 ⊆ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) → dom 𝑄 ⊆ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) | |
| 53 | 51 52 | ax-mp | ⊢ dom 𝑄 ⊆ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) |
| 54 | dmxpid | ⊢ dom ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) = ( 𝑎 × 𝑎 ) | |
| 55 | 53 54 | sseqtri | ⊢ dom 𝑄 ⊆ ( 𝑎 × 𝑎 ) |
| 56 | 49 55 | sstri | ⊢ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) |
| 57 | f1ores | ⊢ ( ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1→ dom 𝐽 ∧ ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) | |
| 58 | 48 56 57 | sylancl | ⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
| 59 | 20 20 | xpex | ⊢ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ∈ V |
| 60 | 59 | inex2 | ⊢ ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) ∈ V |
| 61 | 3 60 | eqeltri | ⊢ 𝑄 ∈ V |
| 62 | 61 | cnvex | ⊢ ◡ 𝑄 ∈ V |
| 63 | 62 | imaex | ⊢ ( ◡ 𝑄 “ { 𝑤 } ) ∈ V |
| 64 | 63 | f1oen | ⊢ ( ( ◡ 𝐽 ↾ ( ◡ 𝑄 “ { 𝑤 } ) ) : ( ◡ 𝑄 “ { 𝑤 } ) –1-1-onto→ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
| 65 | 47 58 64 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) ) |
| 66 | sseqin2 | ⊢ ( ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( 𝑎 × 𝑎 ) ↔ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝑄 “ { 𝑤 } ) ) | |
| 67 | 56 66 | mpbi | ⊢ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝑄 “ { 𝑤 } ) |
| 68 | 67 | imaeq2i | ⊢ ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) |
| 69 | isocnv | ⊢ ( 𝐽 Isom E , 𝑄 ( dom 𝐽 , ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ) | |
| 70 | 47 69 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ) |
| 71 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑤 ∈ ( 𝑎 × 𝑎 ) ) | |
| 72 | isoini | ⊢ ( ( ◡ 𝐽 Isom 𝑄 , E ( ( 𝑎 × 𝑎 ) , dom 𝐽 ) ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) ) | |
| 73 | 70 71 72 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) ) |
| 74 | fvex | ⊢ ( ◡ 𝐽 ‘ 𝑤 ) ∈ V | |
| 75 | 74 | epini | ⊢ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) = ( ◡ 𝐽 ‘ 𝑤 ) |
| 76 | 75 | ineq2i | ⊢ ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) = ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 77 | 6 | oicl | ⊢ Ord dom 𝐽 |
| 78 | f1of | ⊢ ( ◡ 𝐽 : ( 𝑎 × 𝑎 ) –1-1-onto→ dom 𝐽 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) ⟶ dom 𝐽 ) | |
| 79 | 37 38 39 78 | 4syl | ⊢ ( 𝜑 → ◡ 𝐽 : ( 𝑎 × 𝑎 ) ⟶ dom 𝐽 ) |
| 80 | 79 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) |
| 81 | ordelss | ⊢ ( ( Ord dom 𝐽 ∧ ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) → ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ) | |
| 82 | 77 80 81 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ) |
| 83 | sseqin2 | ⊢ ( ( ◡ 𝐽 ‘ 𝑤 ) ⊆ dom 𝐽 ↔ ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) | |
| 84 | 82 83 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( dom 𝐽 ∩ ( ◡ 𝐽 ‘ 𝑤 ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 85 | 76 84 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( dom 𝐽 ∩ ( ◡ E “ { ( ◡ 𝐽 ‘ 𝑤 ) } ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 86 | 73 85 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ( 𝑎 × 𝑎 ) ∩ ( ◡ 𝑄 “ { 𝑤 } ) ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 87 | 68 86 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 “ ( ◡ 𝑄 “ { 𝑤 } ) ) = ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 88 | 65 87 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≈ ( ◡ 𝐽 ‘ 𝑤 ) ) |
| 89 | 88 | ensymd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ≈ ( ◡ 𝑄 “ { 𝑤 } ) ) |
| 90 | fvex | ⊢ ( 1st ‘ 𝑤 ) ∈ V | |
| 91 | fvex | ⊢ ( 2nd ‘ 𝑤 ) ∈ V | |
| 92 | 90 91 | unex | ⊢ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ V |
| 93 | 5 92 | eqeltri | ⊢ 𝑀 ∈ V |
| 94 | 93 | sucex | ⊢ suc 𝑀 ∈ V |
| 95 | 94 94 | xpex | ⊢ ( suc 𝑀 × suc 𝑀 ) ∈ V |
| 96 | xpss | ⊢ ( 𝑎 × 𝑎 ) ⊆ ( V × V ) | |
| 97 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) | |
| 98 | vex | ⊢ 𝑧 ∈ V | |
| 99 | 98 | eliniseg | ⊢ ( 𝑤 ∈ V → ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ↔ 𝑧 𝑄 𝑤 ) ) |
| 100 | 99 | elv | ⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ↔ 𝑧 𝑄 𝑤 ) |
| 101 | 97 100 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 𝑄 𝑤 ) |
| 102 | 3 | breqi | ⊢ ( 𝑧 𝑄 𝑤 ↔ 𝑧 ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) 𝑤 ) |
| 103 | brin | ⊢ ( 𝑧 ( 𝑅 ∩ ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) ) 𝑤 ↔ ( 𝑧 𝑅 𝑤 ∧ 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) ) | |
| 104 | 102 103 | bitri | ⊢ ( 𝑧 𝑄 𝑤 ↔ ( 𝑧 𝑅 𝑤 ∧ 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) ) |
| 105 | 104 | simprbi | ⊢ ( 𝑧 𝑄 𝑤 → 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ) |
| 106 | brxp | ⊢ ( 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 ↔ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) ) | |
| 107 | 106 | simplbi | ⊢ ( 𝑧 ( ( 𝑎 × 𝑎 ) × ( 𝑎 × 𝑎 ) ) 𝑤 → 𝑧 ∈ ( 𝑎 × 𝑎 ) ) |
| 108 | 101 105 107 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( 𝑎 × 𝑎 ) ) |
| 109 | 96 108 | sselid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( V × V ) ) |
| 110 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑎 ∈ On ) |
| 111 | 110 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑎 ∈ On ) |
| 112 | xp1st | ⊢ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) → ( 1st ‘ 𝑧 ) ∈ 𝑎 ) | |
| 113 | onelon | ⊢ ( ( 𝑎 ∈ On ∧ ( 1st ‘ 𝑧 ) ∈ 𝑎 ) → ( 1st ‘ 𝑧 ) ∈ On ) | |
| 114 | 112 113 | sylan2 | ⊢ ( ( 𝑎 ∈ On ∧ 𝑧 ∈ ( 𝑎 × 𝑎 ) ) → ( 1st ‘ 𝑧 ) ∈ On ) |
| 115 | 111 108 114 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ∈ On ) |
| 116 | eloni | ⊢ ( 𝑎 ∈ On → Ord 𝑎 ) | |
| 117 | elxp7 | ⊢ ( 𝑤 ∈ ( 𝑎 × 𝑎 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) ) ) | |
| 118 | 117 | simprbi | ⊢ ( 𝑤 ∈ ( 𝑎 × 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) ) |
| 119 | ordunel | ⊢ ( ( Ord 𝑎 ∧ ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) | |
| 120 | 119 | 3expib | ⊢ ( Ord 𝑎 → ( ( ( 1st ‘ 𝑤 ) ∈ 𝑎 ∧ ( 2nd ‘ 𝑤 ) ∈ 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) ) |
| 121 | 116 118 120 | syl2im | ⊢ ( 𝑎 ∈ On → ( 𝑤 ∈ ( 𝑎 × 𝑎 ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) ) |
| 122 | 110 71 121 | sylc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∈ 𝑎 ) |
| 123 | 5 122 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑀 ∈ 𝑎 ) |
| 124 | simprr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) | |
| 125 | 4 124 | sylbi | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
| 126 | simprl | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ω ⊆ 𝑎 ) | |
| 127 | 4 126 | sylbi | ⊢ ( 𝜑 → ω ⊆ 𝑎 ) |
| 128 | iscard | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 ↔ ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) | |
| 129 | cardlim | ⊢ ( ω ⊆ ( card ‘ 𝑎 ) ↔ Lim ( card ‘ 𝑎 ) ) | |
| 130 | sseq2 | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ω ⊆ ( card ‘ 𝑎 ) ↔ ω ⊆ 𝑎 ) ) | |
| 131 | limeq | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( Lim ( card ‘ 𝑎 ) ↔ Lim 𝑎 ) ) | |
| 132 | 130 131 | bibi12d | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ( ω ⊆ ( card ‘ 𝑎 ) ↔ Lim ( card ‘ 𝑎 ) ) ↔ ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) ) |
| 133 | 129 132 | mpbii | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) |
| 134 | 128 133 | sylbir | ⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) → ( ω ⊆ 𝑎 ↔ Lim 𝑎 ) ) |
| 135 | 134 | biimpa | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ∧ ω ⊆ 𝑎 ) → Lim 𝑎 ) |
| 136 | 22 125 127 135 | syl21anc | ⊢ ( 𝜑 → Lim 𝑎 ) |
| 137 | 136 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → Lim 𝑎 ) |
| 138 | limsuc | ⊢ ( Lim 𝑎 → ( 𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎 ) ) | |
| 139 | 137 138 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( 𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎 ) ) |
| 140 | 123 139 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ∈ 𝑎 ) |
| 141 | onelon | ⊢ ( ( 𝑎 ∈ On ∧ suc 𝑀 ∈ 𝑎 ) → suc 𝑀 ∈ On ) | |
| 142 | 22 140 141 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ∈ On ) |
| 143 | 142 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → suc 𝑀 ∈ On ) |
| 144 | ssun1 | ⊢ ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) | |
| 145 | 144 | a1i | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
| 146 | 104 | simplbi | ⊢ ( 𝑧 𝑄 𝑤 → 𝑧 𝑅 𝑤 ) |
| 147 | df-br | ⊢ ( 𝑧 𝑅 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ 𝑅 ) | |
| 148 | 2 | eleq2i | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝑅 ↔ 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } ) |
| 149 | opabidw | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ { 〈 𝑧 , 𝑤 〉 ∣ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) } ↔ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) ) | |
| 150 | 147 148 149 | 3bitri | ⊢ ( 𝑧 𝑅 𝑤 ↔ ( ( 𝑧 ∈ ( On × On ) ∧ 𝑤 ∈ ( On × On ) ) ∧ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) ) |
| 151 | 150 | simprbi | ⊢ ( 𝑧 𝑅 𝑤 → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) ) |
| 152 | simpl | ⊢ ( ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) | |
| 153 | 152 | orim2i | ⊢ ( ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∧ 𝑧 𝐿 𝑤 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
| 154 | 151 153 | syl | ⊢ ( 𝑧 𝑅 𝑤 → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
| 155 | fvex | ⊢ ( 1st ‘ 𝑧 ) ∈ V | |
| 156 | fvex | ⊢ ( 2nd ‘ 𝑧 ) ∈ V | |
| 157 | 155 156 | unex | ⊢ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ V |
| 158 | 157 | elsuc | ⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ↔ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ∨ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) ) |
| 159 | 154 158 | sylibr | ⊢ ( 𝑧 𝑅 𝑤 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) |
| 160 | suceq | ⊢ ( 𝑀 = ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) → suc 𝑀 = suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) ) | |
| 161 | 5 160 | ax-mp | ⊢ suc 𝑀 = suc ( ( 1st ‘ 𝑤 ) ∪ ( 2nd ‘ 𝑤 ) ) |
| 162 | 159 161 | eleqtrrdi | ⊢ ( 𝑧 𝑅 𝑤 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) |
| 163 | 101 146 162 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) |
| 164 | ontr2 | ⊢ ( ( ( 1st ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) → ( ( ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) ) | |
| 165 | 164 | imp | ⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) ∧ ( ( 1st ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) |
| 166 | 115 143 145 163 165 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ) |
| 167 | xp2nd | ⊢ ( 𝑧 ∈ ( 𝑎 × 𝑎 ) → ( 2nd ‘ 𝑧 ) ∈ 𝑎 ) | |
| 168 | onelon | ⊢ ( ( 𝑎 ∈ On ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑎 ) → ( 2nd ‘ 𝑧 ) ∈ On ) | |
| 169 | 167 168 | sylan2 | ⊢ ( ( 𝑎 ∈ On ∧ 𝑧 ∈ ( 𝑎 × 𝑎 ) ) → ( 2nd ‘ 𝑧 ) ∈ On ) |
| 170 | 111 108 169 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ∈ On ) |
| 171 | ssun2 | ⊢ ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) | |
| 172 | 171 | a1i | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
| 173 | ontr2 | ⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) → ( ( ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) | |
| 174 | 173 | imp | ⊢ ( ( ( ( 2nd ‘ 𝑧 ) ∈ On ∧ suc 𝑀 ∈ On ) ∧ ( ( 2nd ‘ 𝑧 ) ⊆ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ suc 𝑀 ) ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) |
| 175 | 170 143 172 163 174 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) |
| 176 | elxp7 | ⊢ ( 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ∧ ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) ) | |
| 177 | 176 | biimpri | ⊢ ( ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) ∈ suc 𝑀 ∧ ( 2nd ‘ 𝑧 ) ∈ suc 𝑀 ) ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) |
| 178 | 109 166 175 177 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ∧ 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) |
| 179 | 178 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( 𝑧 ∈ ( ◡ 𝑄 “ { 𝑤 } ) → 𝑧 ∈ ( suc 𝑀 × suc 𝑀 ) ) ) |
| 180 | 179 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( suc 𝑀 × suc 𝑀 ) ) |
| 181 | ssdomg | ⊢ ( ( suc 𝑀 × suc 𝑀 ) ∈ V → ( ( ◡ 𝑄 “ { 𝑤 } ) ⊆ ( suc 𝑀 × suc 𝑀 ) → ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ) ) | |
| 182 | 95 180 181 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ) |
| 183 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ω ⊆ 𝑎 ) |
| 184 | nnfi | ⊢ ( suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin ) | |
| 185 | xpfi | ⊢ ( ( suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin ) → ( suc 𝑀 × suc 𝑀 ) ∈ Fin ) | |
| 186 | 185 | anidms | ⊢ ( suc 𝑀 ∈ Fin → ( suc 𝑀 × suc 𝑀 ) ∈ Fin ) |
| 187 | isfinite | ⊢ ( ( suc 𝑀 × suc 𝑀 ) ∈ Fin ↔ ( suc 𝑀 × suc 𝑀 ) ≺ ω ) | |
| 188 | 186 187 | sylib | ⊢ ( suc 𝑀 ∈ Fin → ( suc 𝑀 × suc 𝑀 ) ≺ ω ) |
| 189 | 184 188 | syl | ⊢ ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ ω ) |
| 190 | ssdomg | ⊢ ( 𝑎 ∈ V → ( ω ⊆ 𝑎 → ω ≼ 𝑎 ) ) | |
| 191 | 190 | elv | ⊢ ( ω ⊆ 𝑎 → ω ≼ 𝑎 ) |
| 192 | sdomdomtr | ⊢ ( ( ( suc 𝑀 × suc 𝑀 ) ≺ ω ∧ ω ≼ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) | |
| 193 | 189 191 192 | syl2an | ⊢ ( ( suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
| 194 | 193 | expcom | ⊢ ( ω ⊆ 𝑎 → ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
| 195 | 183 194 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
| 196 | breq1 | ⊢ ( 𝑚 = suc 𝑀 → ( 𝑚 ≺ 𝑎 ↔ suc 𝑀 ≺ 𝑎 ) ) | |
| 197 | 125 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) |
| 198 | 196 197 140 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → suc 𝑀 ≺ 𝑎 ) |
| 199 | omelon | ⊢ ω ∈ On | |
| 200 | ontri1 | ⊢ ( ( ω ∈ On ∧ suc 𝑀 ∈ On ) → ( ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω ) ) | |
| 201 | 199 142 200 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω ) ) |
| 202 | sseq2 | ⊢ ( 𝑚 = suc 𝑀 → ( ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀 ) ) | |
| 203 | xpeq12 | ⊢ ( ( 𝑚 = suc 𝑀 ∧ 𝑚 = suc 𝑀 ) → ( 𝑚 × 𝑚 ) = ( suc 𝑀 × suc 𝑀 ) ) | |
| 204 | 203 | anidms | ⊢ ( 𝑚 = suc 𝑀 → ( 𝑚 × 𝑚 ) = ( suc 𝑀 × suc 𝑀 ) ) |
| 205 | id | ⊢ ( 𝑚 = suc 𝑀 → 𝑚 = suc 𝑀 ) | |
| 206 | 204 205 | breq12d | ⊢ ( 𝑚 = suc 𝑀 → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 ↔ ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
| 207 | 202 206 | imbi12d | ⊢ ( 𝑚 = suc 𝑀 → ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ↔ ( ω ⊆ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) ) |
| 208 | simplr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) | |
| 209 | 4 208 | sylbi | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
| 210 | 209 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) |
| 211 | 207 210 140 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ω ⊆ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
| 212 | 201 211 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ¬ suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ) ) |
| 213 | ensdomtr | ⊢ ( ( ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 ∧ suc 𝑀 ≺ 𝑎 ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) | |
| 214 | 213 | expcom | ⊢ ( suc 𝑀 ≺ 𝑎 → ( ( suc 𝑀 × suc 𝑀 ) ≈ suc 𝑀 → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
| 215 | 198 212 214 | sylsyld | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ¬ suc 𝑀 ∈ ω → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) ) |
| 216 | 195 215 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) |
| 217 | domsdomtr | ⊢ ( ( ( ◡ 𝑄 “ { 𝑤 } ) ≼ ( suc 𝑀 × suc 𝑀 ) ∧ ( suc 𝑀 × suc 𝑀 ) ≺ 𝑎 ) → ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) | |
| 218 | 182 216 217 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) |
| 219 | ensdomtr | ⊢ ( ( ( ◡ 𝐽 ‘ 𝑤 ) ≈ ( ◡ 𝑄 “ { 𝑤 } ) ∧ ( ◡ 𝑄 “ { 𝑤 } ) ≺ 𝑎 ) → ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ) | |
| 220 | 89 218 219 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ) |
| 221 | ordelon | ⊢ ( ( Ord dom 𝐽 ∧ ( ◡ 𝐽 ‘ 𝑤 ) ∈ dom 𝐽 ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ) | |
| 222 | 77 80 221 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ) |
| 223 | onenon | ⊢ ( 𝑎 ∈ On → 𝑎 ∈ dom card ) | |
| 224 | 110 223 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → 𝑎 ∈ dom card ) |
| 225 | cardsdomel | ⊢ ( ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ On ∧ 𝑎 ∈ dom card ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) ) | |
| 226 | 222 224 225 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ≺ 𝑎 ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) ) |
| 227 | 220 226 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ) |
| 228 | eleq2 | ⊢ ( ( card ‘ 𝑎 ) = 𝑎 → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) | |
| 229 | 128 228 | sylbir | ⊢ ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) |
| 230 | 22 197 229 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ( ◡ 𝐽 ‘ 𝑤 ) ∈ ( card ‘ 𝑎 ) ↔ ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) ) |
| 231 | 227 230 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑎 × 𝑎 ) ) → ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) |
| 232 | 231 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) |
| 233 | fnfvrnss | ⊢ ( ( ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ∧ ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) → ran ◡ 𝐽 ⊆ 𝑎 ) | |
| 234 | ssdomg | ⊢ ( 𝑎 ∈ V → ( ran ◡ 𝐽 ⊆ 𝑎 → ran ◡ 𝐽 ≼ 𝑎 ) ) | |
| 235 | 19 233 234 | mpsyl | ⊢ ( ( ◡ 𝐽 Fn ( 𝑎 × 𝑎 ) ∧ ∀ 𝑤 ∈ ( 𝑎 × 𝑎 ) ( ◡ 𝐽 ‘ 𝑤 ) ∈ 𝑎 ) → ran ◡ 𝐽 ≼ 𝑎 ) |
| 236 | 46 232 235 | syl2anc | ⊢ ( 𝜑 → ran ◡ 𝐽 ≼ 𝑎 ) |
| 237 | endomtr | ⊢ ( ( ( 𝑎 × 𝑎 ) ≈ ran ◡ 𝐽 ∧ ran ◡ 𝐽 ≼ 𝑎 ) → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) | |
| 238 | 44 236 237 | syl2anc | ⊢ ( 𝜑 → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) |
| 239 | 4 238 | sylbir | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≼ 𝑎 ) |
| 240 | df1o2 | ⊢ 1o = { ∅ } | |
| 241 | 1onn | ⊢ 1o ∈ ω | |
| 242 | 240 241 | eqeltrri | ⊢ { ∅ } ∈ ω |
| 243 | nnsdom | ⊢ ( { ∅ } ∈ ω → { ∅ } ≺ ω ) | |
| 244 | sdomdom | ⊢ ( { ∅ } ≺ ω → { ∅ } ≼ ω ) | |
| 245 | 242 243 244 | mp2b | ⊢ { ∅ } ≼ ω |
| 246 | domtr | ⊢ ( ( { ∅ } ≼ ω ∧ ω ≼ 𝑎 ) → { ∅ } ≼ 𝑎 ) | |
| 247 | 245 191 246 | sylancr | ⊢ ( ω ⊆ 𝑎 → { ∅ } ≼ 𝑎 ) |
| 248 | 0ex | ⊢ ∅ ∈ V | |
| 249 | 19 248 | xpsnen | ⊢ ( 𝑎 × { ∅ } ) ≈ 𝑎 |
| 250 | 249 | ensymi | ⊢ 𝑎 ≈ ( 𝑎 × { ∅ } ) |
| 251 | 19 | xpdom2 | ⊢ ( { ∅ } ≼ 𝑎 → ( 𝑎 × { ∅ } ) ≼ ( 𝑎 × 𝑎 ) ) |
| 252 | endomtr | ⊢ ( ( 𝑎 ≈ ( 𝑎 × { ∅ } ) ∧ ( 𝑎 × { ∅ } ) ≼ ( 𝑎 × 𝑎 ) ) → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) | |
| 253 | 250 251 252 | sylancr | ⊢ ( { ∅ } ≼ 𝑎 → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
| 254 | 247 253 | syl | ⊢ ( ω ⊆ 𝑎 → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
| 255 | 254 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ≼ ( 𝑎 × 𝑎 ) ) |
| 256 | sbth | ⊢ ( ( ( 𝑎 × 𝑎 ) ≼ 𝑎 ∧ 𝑎 ≼ ( 𝑎 × 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) | |
| 257 | 239 255 256 | syl2anc | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 258 | 257 | expr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 259 | simplr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) | |
| 260 | simpll | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → 𝑎 ∈ On ) | |
| 261 | simprr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) | |
| 262 | rexnal | ⊢ ( ∃ 𝑚 ∈ 𝑎 ¬ 𝑚 ≺ 𝑎 ↔ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) | |
| 263 | onelss | ⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → 𝑚 ⊆ 𝑎 ) ) | |
| 264 | ssdomg | ⊢ ( 𝑎 ∈ On → ( 𝑚 ⊆ 𝑎 → 𝑚 ≼ 𝑎 ) ) | |
| 265 | 263 264 | syld | ⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → 𝑚 ≼ 𝑎 ) ) |
| 266 | bren2 | ⊢ ( 𝑚 ≈ 𝑎 ↔ ( 𝑚 ≼ 𝑎 ∧ ¬ 𝑚 ≺ 𝑎 ) ) | |
| 267 | 266 | simplbi2 | ⊢ ( 𝑚 ≼ 𝑎 → ( ¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎 ) ) |
| 268 | 265 267 | syl6 | ⊢ ( 𝑎 ∈ On → ( 𝑚 ∈ 𝑎 → ( ¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎 ) ) ) |
| 269 | 268 | reximdvai | ⊢ ( 𝑎 ∈ On → ( ∃ 𝑚 ∈ 𝑎 ¬ 𝑚 ≺ 𝑎 → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) ) |
| 270 | 262 269 | biimtrrid | ⊢ ( 𝑎 ∈ On → ( ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) ) |
| 271 | 260 261 270 | sylc | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) |
| 272 | r19.29 | ⊢ ( ( ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ ∃ 𝑚 ∈ 𝑎 𝑚 ≈ 𝑎 ) → ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) | |
| 273 | 259 271 272 | syl2anc | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) |
| 274 | simprl | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ω ⊆ 𝑎 ) | |
| 275 | onelon | ⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → 𝑚 ∈ On ) | |
| 276 | ensym | ⊢ ( 𝑚 ≈ 𝑎 → 𝑎 ≈ 𝑚 ) | |
| 277 | domentr | ⊢ ( ( ω ≼ 𝑎 ∧ 𝑎 ≈ 𝑚 ) → ω ≼ 𝑚 ) | |
| 278 | 191 276 277 | syl2an | ⊢ ( ( ω ⊆ 𝑎 ∧ 𝑚 ≈ 𝑎 ) → ω ≼ 𝑚 ) |
| 279 | domnsym | ⊢ ( ω ≼ 𝑚 → ¬ 𝑚 ≺ ω ) | |
| 280 | nnsdom | ⊢ ( 𝑚 ∈ ω → 𝑚 ≺ ω ) | |
| 281 | 279 280 | nsyl | ⊢ ( ω ≼ 𝑚 → ¬ 𝑚 ∈ ω ) |
| 282 | ontri1 | ⊢ ( ( ω ∈ On ∧ 𝑚 ∈ On ) → ( ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω ) ) | |
| 283 | 199 282 | mpan | ⊢ ( 𝑚 ∈ On → ( ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω ) ) |
| 284 | 281 283 | imbitrrid | ⊢ ( 𝑚 ∈ On → ( ω ≼ 𝑚 → ω ⊆ 𝑚 ) ) |
| 285 | 275 278 284 | syl2im | ⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → ( ( ω ⊆ 𝑎 ∧ 𝑚 ≈ 𝑎 ) → ω ⊆ 𝑚 ) ) |
| 286 | 285 | expd | ⊢ ( ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) → ( ω ⊆ 𝑎 → ( 𝑚 ≈ 𝑎 → ω ⊆ 𝑚 ) ) ) |
| 287 | 286 | impcom | ⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( 𝑚 ≈ 𝑎 → ω ⊆ 𝑚 ) ) |
| 288 | 287 | imim1d | ⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑚 ≈ 𝑎 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ) |
| 289 | 288 | imp32 | ⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) |
| 290 | entr | ⊢ ( ( ( 𝑚 × 𝑚 ) ≈ 𝑚 ∧ 𝑚 ≈ 𝑎 ) → ( 𝑚 × 𝑚 ) ≈ 𝑎 ) | |
| 291 | 290 | ancoms | ⊢ ( ( 𝑚 ≈ 𝑎 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑚 × 𝑚 ) ≈ 𝑎 ) |
| 292 | xpen | ⊢ ( ( 𝑎 ≈ 𝑚 ∧ 𝑎 ≈ 𝑚 ) → ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ) | |
| 293 | 292 | anidms | ⊢ ( 𝑎 ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ) |
| 294 | entr | ⊢ ( ( ( 𝑎 × 𝑎 ) ≈ ( 𝑚 × 𝑚 ) ∧ ( 𝑚 × 𝑚 ) ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) | |
| 295 | 293 294 | sylan | ⊢ ( ( 𝑎 ≈ 𝑚 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 296 | 276 291 295 | syl2an2r | ⊢ ( ( 𝑚 ≈ 𝑎 ∧ ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 297 | 296 | ex | ⊢ ( 𝑚 ≈ 𝑎 → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 298 | 297 | ad2antll | ⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( ( 𝑚 × 𝑚 ) ≈ 𝑚 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 299 | 289 298 | mpd | ⊢ ( ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) ∧ ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 300 | 299 | ex | ⊢ ( ( ω ⊆ 𝑎 ∧ ( 𝑎 ∈ On ∧ 𝑚 ∈ 𝑎 ) ) → ( ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 301 | 300 | expr | ⊢ ( ( ω ⊆ 𝑎 ∧ 𝑎 ∈ On ) → ( 𝑚 ∈ 𝑎 → ( ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) ) |
| 302 | 301 | rexlimdv | ⊢ ( ( ω ⊆ 𝑎 ∧ 𝑎 ∈ On ) → ( ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 303 | 274 260 302 | syl2anc | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( ∃ 𝑚 ∈ 𝑎 ( ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ∧ 𝑚 ≈ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 304 | 273 303 | mpd | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ( ω ⊆ 𝑎 ∧ ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 ) ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 305 | 304 | expr | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( ¬ ∀ 𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) |
| 306 | 258 305 | pm2.61d | ⊢ ( ( ( 𝑎 ∈ On ∧ ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) ) ∧ ω ⊆ 𝑎 ) → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) |
| 307 | 306 | exp31 | ⊢ ( 𝑎 ∈ On → ( ∀ 𝑚 ∈ 𝑎 ( ω ⊆ 𝑚 → ( 𝑚 × 𝑚 ) ≈ 𝑚 ) → ( ω ⊆ 𝑎 → ( 𝑎 × 𝑎 ) ≈ 𝑎 ) ) ) |
| 308 | 12 18 307 | tfis3 | ⊢ ( 𝐴 ∈ On → ( ω ⊆ 𝐴 → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) ) |
| 309 | 308 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |