This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsuc | ⊢ ( Lim 𝐴 → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) ) | |
| 2 | suceq | ⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( suc 𝑥 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |
| 4 | 3 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → ( 𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴 ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴 ) ) |
| 6 | 1 5 | sylbi | ⊢ ( Lim 𝐴 → ( 𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴 ) ) |
| 7 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 8 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 9 | trsuc | ⊢ ( ( Tr 𝐴 ∧ suc 𝐵 ∈ 𝐴 ) → 𝐵 ∈ 𝐴 ) | |
| 10 | 9 | ex | ⊢ ( Tr 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 11 | 7 8 10 | 3syl | ⊢ ( Lim 𝐴 → ( suc 𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 12 | 6 11 | impbid | ⊢ ( Lim 𝐴 → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) |