This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of Mendelson p. 254. (Contributed by NM, 24-Jul-2004) (Proof shortened by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpen | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ⊢ Rel ≈ | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ∈ V ) |
| 3 | endom | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 4 | xpdom1g | ⊢ ( ( 𝐶 ∈ V ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 6 | 1 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 7 | endom | ⊢ ( 𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷 ) | |
| 8 | xpdom2g | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ≼ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 10 | domtr | ⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ∧ ( 𝐵 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) | |
| 11 | 5 9 10 | syl2anc | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ) |
| 12 | 1 | brrelex2i | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ∈ V ) |
| 13 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 14 | endom | ⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴 ) |
| 16 | xpdom1g | ⊢ ( ( 𝐷 ∈ V ∧ 𝐵 ≼ 𝐴 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) | |
| 17 | 12 15 16 | syl2anr | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ) |
| 18 | 1 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 19 | ensym | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶 ) | |
| 20 | endom | ⊢ ( 𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶 ) | |
| 21 | 19 20 | syl | ⊢ ( 𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶 ) |
| 22 | xpdom2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐷 ≼ 𝐶 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) | |
| 23 | 18 21 22 | syl2an | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 24 | domtr | ⊢ ( ( ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐷 ) ∧ ( 𝐴 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) |
| 26 | sbth | ⊢ ( ( ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐷 ) ∧ ( 𝐵 × 𝐷 ) ≼ ( 𝐴 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) | |
| 27 | 11 25 26 | syl2anc | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐵 × 𝐷 ) ) |